Летательный аппарат своими руками. Летательный аппарат

Люди с самых давних времен стремились в небо. Достаточно вспомнить истории об Икаре, ковре-самолете, Карлсоне и Бабе Яге с ее метлой. С тех пор прошли века, и на смену сказкам пришла наука с ее четким и конструктивным подходом. Поэтому сегодняшняя наша статья будет посвящена малой авиации.

1

Все мы знаем о существовании парашютов. Основным недостатком этого летающего средства, является его неспособность управлять полетом. С этим легко справляется «Параплан».
Параплан – сверхлегкий безмоторный летательный аппарат. Полет осуществляется, благодаря набегающему потоку воздуха, который подается через специальные отверстия — воздухозаборники.

2


Является аналогом Параплана, с той лишь разницей, что он оборудован двигателем, обеспечивающим его запуск и полет.

3


Аппарат, близкий по строению к мотопараплану, но, в отличие от него, двигатель размещается не на кресле пилота, а закрепляется на раме, снабженной также шасси для разбега.

4


Летательный аппарат назван в честь греческой буквы Дельта. Полет осуществляется благодаря восходящим потокам воздуха и балансирующей подвеске пилота. Именно при помощи дельтаплана, вел за собой стаю журавлей президент России Путин В.В. Правда, его дельтаплан был снабжен мотором. В результате этого, он превратился в «Мотодельтаплан», или «Дельталёт».

5


В переводе с английского, вингсьют читается как «белка-летяга». Внешне он похож на костюм-крыло. Между руками и ногами имеются дополнительные складки, которые во время полета превращаются в крылья. Вингсьютом пользуются при выполнении своих головокружительных трюков. Посадка же осуществляется при помощи парашюта.
Самыми зрелищными являются прокси полеты над склонами. Видео по теме

6


При этом мы будем говорить не о шарике на ниточке в руках ребенка, а о шаре, на котором можно облететь весь Земной шар. Научное название шара звучит как «Аэростат» или «Монгольфьер». Это летательный аппарат, использующий для полёта нагретый воздух. К шару прикреплена корзина для пассажиров, в которой также находится горелка для поддержания требуемой температуры. Полет осуществляется благодаря физическому закону, по которому следует, что нагретый воздух более легкий, по сравнению с холодным. Именно поэтому и происходит полет.

7


Несмотря на то, что звучного названия у аппарата пока нет, поговорить о нем все же стоит. Аппарат, разработанный японской корпорацией «GEN Corporation», представляет собой кресло, сверху которого расположены четыре вертолетных винта, способных поднять груз до 210 кг. Конструкция весит всего 70 кг и может находиться в полете до 30 минут.
Стоимость аппарата составляет 30 тысяч долларов!!!

8


Персональный сверхлегкий летательный аппарат вертикального взлета и посадки. Разработчиком Martin Jetpack является новозеландская компания. Устройство работает на бензине. Может пролетать до 100 км/час, поднимаясь на высоту до 2,5 км. При полной заправке может находиться в воздухе в течение получаса.

9


Аппарат, разработанный американцами, представляет собой самый маленький пилотируемый реактивный самолет. Конструкция самолета представляет собой жесткую конструкцию, снабженную крыльями – экзоскелет. Устройство настолько легко, что его можно носить как ранец. Благодаря EXO-Wing, можно пролететь до 15 км, не приземляясь.

10


Последний наш номинант является реальным претендентом на получение приза Сикорского, который составляет 250 тысяч долларов.
По условиям конкурса, он должен подняться в воздух на высоту 3 метра и продержаться в течение одной минуты. Аппарат представляет собой гибрид велосипеда и вертолета. Он летает исключительно на мускульной силе человека!!!

Когда приступают к классификации предметов или явлений, то ищут основные, наиболее общие черты, свойства, которые служат доказательством их родства. Наряду с этим изучают и такие признаки, которые резко отличали бы их друг от друга.

Если мы, следуя этому принципу, начнем классифицировать современные летательные аппараты, то прежде всего встанет вопрос: какие же признаки или свойства летательных аппаратов считать наиболее важными?

Может быть, можно классифицировать их, исходя из материалов, из которых изготовлены аппараты? Да, можно, но это будет мало наглядно. Ведь из разных материалов можно сделать одно и то же. Алюминий, сталь, дерево, полотно, резина, пластмассы в тон или иной степени применяются при изготовлении н самолетов, и вертолетов, н дирижаблей, и воздушных шаров.

Может быть основой для классификации летательных аппаратов избрать: когда и кем сделан аппарат впервые? Можно классифицировать в историческом плане - это вопрос важный, но тогда под одну рубрику попадут несхожие между собой по многим признакам аппараты, предложенные в одно время и в одной стране.

Очевидно, не эти признаки для классификации нужно считать наиболее важными.

Ввиду того что летательные аппараты предназначены для перемещения в воздушной среде, их принято подразделять на аппараты легче воздуха и аппараты тяжелее воздуха . Итак, основой классификации летательных аппаратов является их вес по отношению к воздуху.

Мы видим, что к аппаратам легче воздуха относятся дирижабли, воздушные шары и стратостаты . Они поднимаются и держатся в воздухе за счет наполнения их легкими газами. К аппаратам тяжелее воздуха принадлежат самолеты, планеры, ракеты и винтокрылые аппараты.

Самолет и планер поддерживаются в воздухе подъемной силой, создаваемой крыльями; ракеты удерживаются в воздухе силой тяги, развиваемой ракетным авигателем, а винтокрылые аппараты - подъемной силой несущего винта. Существуют (пока в проектах) аппараты, занимающие промежуточное положение между самолетами и винтокрылыми аппаратами, самолетами и ракетами. Это так называемые преобразуемые самолеты, или конверто-планы, которые должны объединить с себе положительные свойства как тех, так и других и сочетать огромные скорости полета с возможностью висения в воздухе, возможностью взлетать без разбега и садиться без пробега.

Вертолет, как и автожир, относится к винтокрылым летательным аппаратам. Их различие состоит в том, что несущий винт автожира не связан с двигателем и может свободно вращаться.

Несущий винт вертолета (или несколько несущих винтов) в отличие от несущего винта автожира в процессе взлета, полета и посадки приводится во вращение двигателем и служит как для создания подъемной силы, так и тяги. Создаваемая винтом аэродинамическая сила используется как для поддержания вертолета в воздухе, так и для его движения вперед Кроме того, несущий винт является также органом управления вертолетом.

Если у самолета тягу создает воздушный винт или реактивный двигатель, подъемную силу - крылья, а органами управления служат рули и элероны, то у вертолета все эти функции выполняет несущий винт. Из этого становится понятным, насколько важно значение несущего винта на вертолете.

Вертолеты отличаются друг от друга по количеству несущих винтов, по их расположению, по способу привода вращения. В соответствии с этими признаками и разделены вертолеты, изображенные.

June 25th, 2016

В 50-60-х годах начались разработки одних из наиболее экзотических видов аппаратов - "летающих платформ" и связанных с ними "летающих джипов". Первоначальное назначение "летающей платформы" - выполнение разведывательных заданий, рассчитывались они на полет одного человека. Больший же по размерам "летающий джип" казался потенциально полезным для выполнения множества различных задач.

Не так давно мы обсуждали , но были и еще примеры конструкторской мысли...

Фото 2.

"Летающей платформой" стали называть вертикально взлетающий аппарат с соосными винтами, расположенными в кольцевом канале. Разработка одноместных "летающих платформ" боевого использования началась в США в рамках исследовательской программы НАСА начала 1950-х годов. Испытания включали в себя пилотируемые привязные платформы, впервые поднялись в воздух с помощью сжатого воздуха, а затем с помощью роторов. Концепция, использованная при разработках, была предложена в свое время инженером НАСА Ч. Циммерманом, который уже известен читателю по его само-летам-"летающим блинам" V-173 и XF5U-1.

Фото 3.

Его предложение заключалось в следующем. Если ротор, например, разместить снизу основания аппарата, то пилот был бы способен управлять аппаратом при помощи перемещения собственного веса, т.н. "кинестетическое" управление. Это управление основано на инстинктивной реакции человека сохранять равновесие, когда он стоит или идет. В "летающей платформе" пилот для поворота машины в нужное положение наклоняется в требуемую сторону. Предполагалось, что такое управление позволит пилоту летать на такой платформе после небольшой тренировки.

Фото 4.

Предварительные испытания продемонстрировали техническую реализуемость концепции, после чего три компании - "Лакнер", "Бенсен" и "Хиллер" - получили контракты на разработку прототипа платформы.

Фото 5.

В середине 1950-х компания "Лакнер" разработала летательный аппарат, названный DH-4 "Helivector", позже переименованный в HZ-1 "Aerocycle", который выглядел чем-то вроде гибрида вертолета с подвесным двигателем с мотоциклом. Этот аппарат представлял собой конструкцию с установленным на ней двигателем "Mercury" мощностью 40 л.с. и посадочным устройством, состоящим из воздушных мешков на концах лонжеронов. Воздушные мешки позже были заменены металлическими подпорками. Двигатель управлял парой роторов противоположного вращения диаметром 4,6 м, установленных под двигателем, в то время как пилот стоял вертикально на платформе выше двигателя, будучи защищенным от падения в ротор привязными ремнями безопасности.

Фото 6.

"Helivector/Aerocycle" впервые полетел в январе 1955 г., полеты проходили успешно, после чего армия США заказала 12 аппаратов. По заявлениям представителей компании "Лакнер", что машина могла летать со скоростью до 105 км/ч и нести полезный груз весом 55 кг помимо пилота, продолжительность полета составляла около одного часа. Однако одна вещь напоминала, что летать было опасно. Мало того, что пилот стоял выше вращающихся роторов, но роторы конструктивно располагались близко к земле, делая опасным приземление и взлет, поскольку в них могли легко попадать камни и различные обломки.

Фото 7.

Некоторые источники утверждали, что "Helivector/Aerocycle" был прост в полете, но другие заявляли, ссылаясь на мнение летчиков-испытателей, что новички не могли пилотировать аппарат с полной безопасностью для себя. После того как произошли два летных происшествия, в которых роторы противоположного вращения изогнулись и столкнулись, проект был прекращен прежде, чем кто-то серьезно пострадал.

Фото 8.

Аппарат компании "Бенсен" под обозначением В-10 "Propcopter" был не более успешен. Эта неказистая небольшая машина состояла из квадратной рамы с воздушными винтами диаметром 1,2 м, установленными вертикально спереди и сзади рамы. Каждый вращался своим собственным двигателем "Маккалох" мощностью 72 л.с. "Propcopter" полетел в 1959 г. и, очевидно, был сложен в управлении.

Вскоре проект был прекращен.

Фото 9.

Проекты компании "Хиллер" были лучше продуманы и привлекли к себе много внимания. "Хиллер" разработал свою первую "летающую платформу" VZ-1 "Pawnee" на основе контракта, предоставленного в конце 1953 г. научно-исследовательским управлением ВМФ (ONR). Машина впервые взлетела в феврале 1955 г.

Фото 10.

VZ-1 имел пару роторов противоположного вращения диаметром 1,5 м, расположенных внутри кольцевого канала. Каждый ротор управлялся собственным двухтактным двигателем мощностью 40 л.с. Пилот стоял над кольцевым каналом, окруженный вокруг перилами и защищенный привязными ремнями безопасности. Он управлял двигателями при помощи ручки газа и наклонялся, чтобы вести аппарат в ту или другую сторону. Кольцевой канал улучшал безопасность при взлете и посадке. Кроме того, он также обеспечивал дополнительное приращение подъемной силы на 40%. Аппарат неплохо управлялся в полете, однако вскоре он был модифицирован: установили более длинные стойки шасси, чтобы увеличить клиренс, и поставили восемь рулей ниже канала, чтобы улучшить управление полетом.

Фото 11.

Армия США была заинтересована в VZ-1, и в ноябре 1956 г. фирме "Хиллер" был выдан контракт на постройку версии большего размера, которая выполнила свой первый полет в 1958 г. Новый аппарат имел три двигателя мощностью по 40 л.с., вращающих роторы в кольцевом канале диаметром 2,4 м. Это больше чем в два раза увеличило роторную область, увеличив вес полезного груза и дальность полета при уменьшении шума от двигателей.

Фото 12.

Армия заказала третий аппарат больших размеров. Вместо колесного шасси, как у двух более ранних образцов, было установлено лыжное шасси. Аппарат имел сиденье и обычное вертолетное средство управления, так как управление перемещением центра тяжести стало менее эффективным из-за увеличения мощности транспортного средства и веса. Эта версия впервые взлетела в 1959 г. VZ-1 имел свои достоинства, но он был в конечном счете оценен как слишком маленький, медленный и годный только для ограниченного использования. Армия отказалась от программы в 1963 г., и два из трех аппаратов сохранились только в музейных экспозициях.

Фото 13.

В то же самое время как проводились исследования "летающих платформ", по контрактам с армией США велись разработки больших летательных аппаратов типа "летающий джип". Так назывались летательные аппараты двухвинтовой продольной схемы или четырехвинто-вой. Первоначально "летающие джипы" задумывались как универсальное транспортное средство, которое должно было занять место между армейским автомобилем-вездеходом "Джип" и легким вертолетом. Его можно было использовать для транспортных или разведывательных операций, как подвижную платформу для стрельбы из безоткатных орудий, пуска ракет, для корректировки артиллерийского огня, установки радиоэлектронного оборудования и т.д. Исследования начались в 1956 г., затем был объявлен конкурс, в котором приняло участие около 20 фирм. Победителями были объявлены фирмы "Крайслер", "Кертисс-Райт" и "Пясецкий", которым выдали контракты на общую сумму 1,7 млрд. долларов для постройки прототипов.

"Крайслер" разработал два прототипа своего "летающего джипа" VZ-6, поставив их армии в конце 1958 г. VZ-6 был одноместное транспортное средство, имевшее форму прямоугольного ящика, с двумя роторами спереди и сзади. Имелись резиновые конические обтекатели вокруг основания аппарата, ниже роторов были установлены рули. В качестве силовой установки VZ-6 использовался единственный поршневой двигатель мощностью 500 л.с. Полеты на привязи, выполненные в 1959 г., показали, что VZ-6 не очень хорошо управлялся и имел недостаточную мощность. Первый свободный полет VZ-6 привел к переворачиванию аппарата. Пилот уцелел, но транспортное средство было сильно повреждено. Армия признала VZ-6 неудачной разработкой, оба прототипа отправили на слом в 1960 г.

Фото 14.

Разработанный фирмой "Кертисс-Райт" аппарат VZ-7 был известен также как "летающий грузовик". Два прототипа были поставлены армии в середине 1958 г. VZ-7 представлял собой простую металлическую ферму с пилотом спереди и четырьмя винтами, расположенными по углам. Все воздушные винты управлялись единственным двигателем "Artouste" мощностью 425 л.с. Аппарат управлялся дифференцированным изменением шага винтов, а также рулями. VZ-7 был длиной 5,2 м и шириной 4,9 м и имел максимальный взлетный вес 770 кг, аппарат мог нести 250 кг полезного груза. VZ-7 управлялся хорошо и был прост в полете, но он не выполнял требования по высоте и скорости полета. Вскоре испытания закончили, а прототипы возвратили на фирму в середине 1960 г.

Фото 15.

Усилия фирмы "Пясецкий" по созданию "летающего джипа" были наиболее успешны из трех фирм-конкурсантов. Первым ее аппаратом был "Model 59H AirGeep", которому дали армейское обозначение VZ-8P. VZ-8P был длиной 7,9 м и шириной 2,7 м, трехлопастные роторы располагались спереди и сзади, между ними размещались пилот и пассажир. В VZ-8P роторы диаметром 2,4 м управлялись парой поршневых двигателей "Lycoming" мощностью по 180 л.с., причем один двигатель мог управлять обоими роторами, если другой двигатель выходил из строя. Роторы вращались в противоположных направлениях. Управление обеспечивалось изменением шага винта, а также рулями, установленными снизу. Движение вперед достигалось при опускании носа аппарата вниз.
Первый полет VZ-8P состоялся 12 октября 1958 г. По результатам испытательного полета было принято решение поставить более мощную силовую установку. Аппарат вернули на фирму для замены поршневых двигателей одним газотурбинным двигателем "Artouste" IIB мощностью 425 л.с., модернизированный VZ-8P полетел в конце июня 1959 г. Он весил 1,1 тонны и мог нести груз 550 килограммов, включая пилота.

VZ-8P участвовал также и в конкурсе на разработку "летающего джипа" для ВМФ, который начался в июне 1961 г. На него поставили еще более мощный двигатель "Airesearch" 331-6, помимо этого аппарат оснастили поплавками. Новая версия аппарата получила обозначение РА-59 "SeaGeep".

Фото 16.

Фирма "Пясецкий" построила в рамках нового контракта еще один аппарат под обозначением "Model 59K" (армейское обозначение VZ-8P (В) "AirGeep II"), который совершил свой первый полет летом 1962 г. Аппарат VZ-8P (В) был подобен своему предшественнику, за исключением того, что конструкция имела в середине небольшой излом. Считалось, что небольшой наклон носового и хвостового роторов позволит уменьшить лобовое сопротивление в горизонтальном полете. В качестве силовой установки для VZ-8P (В) использовали два двигателя "Artouste" ПС мощностью по 400 л.с., связанных так, что при выходе одного двигателя из строя другой мог управлять обоими роторами. Один двигатель мог также быть связан с колесным шасси, чтобы управлять машиной при движении по земле. Увеличенная мощность силовой установки позволила достичь максимального взлетного веса 2200 кг. Пилот и наблюдатель имели катапультируемые кресла, которые позволяли экипажу спастись практически при нулевой скорости движения аппарата. Кроме того, на аппарате имелось место для размещения дополнительных пассажиров или грузов.


Опыт эксплуатации "летающих платформ" и "летающих джипов" в 50-60-х годах показал, что они имели некоторые достоинства, в частности были по размерам меньше вертолетов и могли работать на земле более успешно. Однако вертолеты могли легко приземляться в гористой местности и имели более удобные размещения пассажирских кресел. Наибольшим недостатком считалось, что "летающие платформы" и "летающие джипы" имели небольшие площади роторов, т.к. это являлось причиной их неустойчивости на некоторых режимах, и относительно большой расход топлива. А поскольку они не показали достаточных преимуществ перед вертолетами, то и дальнейшее их развитие было приостановлено.

Однако в конце 90-х годов снова появился интерес к аппаратам этого типа. Американская фирма "Millennium Jet" (Саннивейл, шт. Калифорния) разработала проект необычного аппарата под названием "SoloTrek" XFV. Он представляет собой гибрид "летающей платформы" и конвертоплана. Пилот располагается в аппарате стоя, над его головой находятся два винта диаметром 0,9 м в кольцевых каналах, управление аппаратом осуществляется двумя ручками в подлокотниках. Правая ручка – для путевого управления, а левая ручка – для управления оборотами двигателей. Пилот, помимо обычных пилотажных приборов, имеет дисплей, встроенный в очки шлема. При горизонтальном движении (вперед или назад) винты синхронно отклоняются от вертикальной оси, при повороте аппарата вокруг вертикальной оси осуществляется дифференциальное отклонение винтов.

SoloTrek" имеет полный вес 318 кг, крейсерскую скорость – 95 км/ч, максимальную скорость – 130 км/ч, запас топлива – 38 л, дальность – 240 км. Потолок, как ожидается, будет составлять 2440 м, хотя практически аппарат будет летать на малых высотах. Прототип "SoloTrek" имел двигатель "Hirth" F30 мощностью 120 л.с. Этот двигатель часто используется на сверхлегких самолетах. Он может вращать винты со скоростью до 5000 об/мин, хотя предполагается, что аппарат будет взлетать на 3500 об/мин. Винты изготовлены из композиционного материала "нейлона-углепластика" и могут выдерживать столкновения с птицами. В серийном производстве "SoloTrek", вероятно, будет оборудован двигателем WTS-125 мощностью 125 л.с. В комплект аппарата "SoloTrek" включен парашют, который раскрывается автоматически по сигналу акселерометра, если аппарат начинает падать. В конце октября 2000 г. опытный аппарат испытывался в центре им. Эймса (Калифорния). Его конструктор Майкл Мошиер, бывший летчик ВМФ США, полагает, что "пришло время для самолетов, подобных "SoloTrek".

Израильская компания "Aero-Design & Development" (AD&D) работала над "летающей платформой" под названием "Hummingbird" ("Колибри"), которая имеет сходство с аппаратом фирмы "Хиллер". Аппарат "Hummingbird" построен с использованием современных технологий, например, для уменьшения веса в конструкции ис-
пользуются композиционные материалы. Силовая установка аппарата состоит из четырех поршневых двигателей. Вес аппарата – около 115 кг, максимальная продолжительность полета – 45 минут со скоростью 45 км/ч.

Фирма "Millennium Jet" разрабатывает еще один аппарат под названием "DuoTrek", который представляет собой гибрид вертолета и конвертоплана. "DuoTrek" имеет в длину 4,8 м, полностью загруженный весит 660 кг, может нести 160 кг полезного груза на дальность 550 км. Разрабатываются варианты аппарата с двумя и четырьмя винтами, рассчитанные на экипаж из одного и двух человек. Этой разработкой заинтересовалось управление перспективных исследований Министерства обороны США.

Другая американская компания РАМ (шт. Вирджиния) работала над "летающей платформой" начиная с 1989 г. и построила аппарат ILV (Individual Lifting Vehicle). Аппарат ILV напоминает интересную смесь различных ранних проектов "летающих платформ". Он представляет собой простую трубчатую конструкцию диаметром приблизительно 3 м на опорах, оснащенную двумя двигателями "Hirth" F-30 мощностью по 195 л.с., каждый из которых вращает винт диаметром 2,8 м. Управление обеспечивается пилотом, который стоит на вершине платформы и использует способ управления путем перемещения центра тяжести. Аппарат РАМ 100В имеет пустой вес приблизительно 300 кг, может нести полезный груз весом до 200 кг, максимальная скорость составляет 100 км/ч, а дальность – 40 км. Компания предполагает использовать аппарат, в частности, для охраны стад рогатого скота или для опыления сельскохозяйственных культур.


источники

Миниатюрный тактический дрон HUGINN X1. Компания Sky-Watch Labs в сотрудничестве с датским техническим университетом в настоящее время разрабатывает БЛА MUNINN VX1 UAV при частичном финансировании государством через Инновационный фонд. БЛА MUNINN VX1 способен взлетать и садиться вертикально в стесненных и ограниченных пространствах, летать горизонтально на высокой скорости, преодолевая большие расстояния и быстро достигая интересующие объекты или зоны

Становится ли мир мини- и микро-БЛА перенаселенным? На что похож там ландшафт? Произойдет ли дарвиновский отбор, который позволит лучшим жить и развиваться вместе с научным прогрессом?

За последние годы малоразмерные БЛА (как мини, так и микро) стали популярным инструментом наблюдения в сфере обороны и безопасности, а постоянно развивающийся технологический прогресс, по-видимому, обеспечит блестящее будущее этой технологии. Особое внимание уделяется дальнейшему совершенствованию этих систем для военных операций в городских условиях, во многих странах мира ведутся непрерывные научно-исследовательские и опытно-конструкторские работы в этом направлении.

Впрочем, в современном оперативном пространстве эти технологии распространяются также среди террористических и повстанческих группировок, стремящихся использовать БЛА для доставки грязных бомб, что заставляет власти повышать безопасность своих собственных систем, а также коренным образом менять тактику и методы борьбы с БЛА.

Посадка в апреле 2015 года небольшого аппарата вертикального взлёта и посадки со следами радиационных материалов на крышу резиденции премьер-министра Японии в Токио является доказательством укрепления этой тенденции, и это вынудило более развитые вооруженные силы подумать о том, как лучше всего использовать эти технологии применительно к наступательным и оборонным операциям.

Мини-БЛА

Израиль продолжает удерживать прочные позиции на рынке за счет интенсивных разработок малоразмерных БЛА, что связано, прежде всего, с тем, что израильская армия постоянно проводит контртеррористические и противоповстанческие операции в рамках более масштабных действий по обеспечению внутренней безопасности в застроенных городских районах.

По словам генерального управляющего компании Israel Aerospace Industries (IAI) Malat Баруха Бонена рынок БЛА является свидетелем «устойчивого» роста числа малых БЛА (как микро, так и мини), особенно когда миниатюризация размеров и массы сенсорной аппаратуры снижает требования к грузоподъемности летательных аппаратов. Кроме того, он считает, что эта тенденция обусловлена также тем, что использование малоразмерных платформ позволяет уменьшить вероятность их идентификации и попадания в руки противника.

Семейство малоразмерных летательных аппаратов компании IAI Malat включает мини-БЛА BIRD-EYE 400, предназначенный для сбора разведывательных данных для низших эшелонов; микро-БЛА MOSQUITO с миниатюрной видеокамерой для городских операций; и винтокрылый мини-БЛА GHOST, развертываемый из двух ранцев, также предназначенный для городских операций и «бесшумной» разведки и наблюдения.

Впрочем, помимо традиционных производителей БЛА меньших размеров в Европе, Израиле и США в настоящее время появился ряд компаний в азиатско-тихоокеанском регионе, предлагающих на мировом рынке свои продвинутые решения.

Получив большой опыт успешной разработки более крупных платформ, в начале этого года индийская компания Asteria Aerospace решила начать разработку своего первого мини-БЛА A400. Платформа A400 представляет собой квадрокоптер массой 4 кг, предназначенный для выполнения разведывательных задач в застроенных районах. Эксплуатационная скорость аппарата составляет 25 км/ч, он способен выполнять свои задачи в течение 40 минут в пределах прямой видимости на максимальной дальности 4 км.

В компании Asteria Aerospace сообщили, что аппарат A400 к концу 2015 года должен поступить для оценки в вооруженные силы и силовые структуры.

В Европе польская Инспекция по вооружениям выпустила запрос предложений по системам мини-БЛА в рамках более широкой стратегии повышения уровня роботизации вооруженных сил Польши.

Польское министерство обороны планирует приобрести 12 крупных тактических БЛА под обозначением ORLIK, но Инспекция по вооружениям также хочет закупить 15 мини-БЛА WIZJER для городских операций и разведывательно-наблюдательных задач в тылу противника. Кроме того, польское минобороны, несомненно, будет закупать микро-БЛА меньшего размера.

На балансе польского министерства обороны уже имеется некоторое количество БЛА FlyEye компании WB Electronics, а также примерно 45 мини-БЛА ORBITER компании Aeronautics, которые были поставлены в 2005-2009 годы. Эти системы с электрическими двигателями способны проводить разведывательно-наблюдательные операции в прямой видимости с практическим потолком 600 метров, максимальной скоростью 70 узлов, продолжительностью полета 4 часа и полезной грузоподъемностью 1,5 кг.

По условиям запроса предложений каждая из 15 мини-систем WIZJER будет состоять из трех летательных аппаратов с соответствующими наземными станциями управления и материально-технического снабжения, включая запасные части. Министерство обороны затребовало мини-БЛА с максимальной дальностью действия 30 км, предназначенный для разведки, наблюдения и рекогносцировки на уровне роты и батальона. Выдача контракта ожидается в 2016 году, а сами летательные аппараты будут поставлены в 2022 году.

К предпочтительным вариантам, представленным на конкурс, относится модернизированный вариант мини-БЛА FlyEye компании WB Electronics, а также совместное предложение БЛА E-310 UAV от компаний Pitradwar и Eurotech.

Аппарат FlyEye способен запускаться с руки из «ограниченных пространств» в городской местности; он имеет уникальную парашютную систему возвращения, с помощью которой аппарат опускается в радиусе 10 метров от назначенной точки приземления.

Приборный блок устанавливается в нижней части фюзеляжа с целью оптимизации поля зрения сенсора; аппарат FlyEye способен нести две камеры в одном приборном блок. Сам аппарат, имеющий противообледенительную и противоштопорную системы, управляется при помощи легкой наземной станции управления LGCS (Light Ground Control Station), тогда как данные и визуальная информация с приборного блока передаются на видеотерминал в реальном времени.

Сам аппарат может лететь прямо к целевой точке по заранее определенному маршруту и способен барражировать над интересующим районом. Станция LGCS позволяет управлять аппаратом также и в ручном режиме.

Канал передачи цифровых данных также обеспечивает возможность передачи данных о цели в системы управления огнем минометов или системы управления боем с целью выполнения последующих огневых или других боевых задач. Бортовая коммуникационная система работает в частотном диапазоне НАТО 4,4-5,0 ГГц. По данным компании WB Electronics БЛА FlyEye управляют два человека, воздушный винт приводится «бесшумным» электродвигателем, работающим от литий-полимерного аккумулятора.

Длина этого мини-БЛА составляет 1,9 метра размах крыльев 3,6 метра, максимальная взлетная масса 11 кг. Скорость полета аппарата составляет 50-170 км/ч, он может летать на высотах до 4 км на максимальную дальность 50 км, максимальная продолжительность полета составляет три часа.

По данным компании Eurotech, БЛА E-310 может нести оптико-электронную аппаратуру или РЛС с синтезированной апертурой, а также другое «специализированное оборудование наблюдения». Он имеет «высокую мобильность и сниженные эксплуатационные расходы», аппарат может принять до 20 кг бортовой аппаратуры, при этом максимальная продолжительность полета достигает 12 часов. Предельный практический потолок E-310 составляет 5 км, он может развить скорость 160 км/ч и имеет максимальный радиус действия 150 км. Аппарат также запускается с помощью пневматической установки и возвращается на парашюте, либо садится традиционным способом на лыжных или колесных стойках. В компании Eurotech поясняют, что E-310 перевозится на борту «небольшой машины» или в прицепе.


Мини-БЛА SKYLARK ILE компании Elbit Systems принимал участие в боевых действиях, Он был выбран израильской армией в качестве беспилотного авиационного комплекса уровня батальона, а также был поставлен более чем 20 заказчикам из разных стран. Солдаты подразделения, укомплектованного БЛА SKYLARK I-LE, провели неделю в пустыне Негев, обучаясь работе с комплексом SKYLARK (на фото)

Микро-БЛА

Также весьма полезны во время операций в городских условиях беспилотные летательные аппараты класса «микро». Военные хотят иметь небольшие, запускаемые с рук системы, способные вести скрытое наблюдение в зданиях, замкнутых пространствах и целевых зонах. В Афганистане уже применялись подобные крошечные системы, например БЛА PD-100 BLACK HORNET компании Prox Dynamics, хотя операторы критиковали его за недостаточную надежность при проведении операций в сложной ветровой обстановке и при сильной запыленности.

Это специфическая «персональная разведывательная система» фактически представляет собой воздушное судно вертикального взлета и посадки «класса нано», которое работает от фактически бесшумного электродвигателя. При диаметре винта всего 120 мм BLACK HORNET несет камеру массой 18 грамм, развивает скорость 5 м/с и имеет продолжительность полета до 25 минут. Аппарат с дистанционно управляемой станцией оптической видовой разведки на опорно-поворотном устройстве способен работать в прямой видимости от оператора до 1,5 км, он может летать по заранее запрограммированным маршрутам, а также зависать на месте.

Впрочем, нынешние тенденции, скорее всего, указывают на то, что для выполнения разведывательных задач, обычно проводящихся перед боевой операцией, военные выбирают микро-БЛА несколько большего размера.

БЛА InstantEye производства компании Physical Science Incorporated (PSI) в настоящее время состоит на вооружении не называемых специальных подразделений стран НАТО и групп по борьбе с наркотиками, работающих в Южной Америке. Этот летательный аппарат также был принят на вооружение министерством обороны США и недавно был поставлен для испытаний в британскую армию. Этот аппарат ручного запуска весит менее 400 грамм, а производитель заявляет о времени готовности к пуску всего 30 секунд. Максимально время полета составляет 30 минут, аппарат InstantEye имеет максимальную дальность 1 км и может нести различные сенсоры.

Этот БЛА, во время полета имитирующий движения бражника (вид бабочки), может управляться в «ручном» режиме, развивая при этом скорость до 90 км/ч. InstantEye управляется с наземной станции; его комплект наблюдения и разведки состоит из передней, боковых и камеры нижнего обзор, обеспечивающие навигацию, слежение и целеуказание. Возможности визуальной разведки могут быть расширены за счет установки камеры высокого разрешения GoPro или инфракрасной камеры, которая способна генерировать изображение, создаваемое встроенным инфракрасным светодиодным осветителем, способным подсветить землю с высоты 90 метров.

Впрочем, кроме существующего использования для скрытого наблюдения и разведки в тылу, этот воздушный аппарат вскоре получит сенсорный комплект разведки ОМП в ответ на возможное проведение контртеррористических операций в городских условиях. Кроме того, с целью удовлетворения потребностей специальных подразделений НАТО на него можно установить ретрансляционную аппаратуру для передачи речевых и голосовых данных.

Еще одной системой, очень популярной у специальных подразделений, является беспилотный авиационный комплекс (БАК) SKYRANGER компании Aeryon Labs, который на международном рынке продвигается компанией Datron World Communications. По словам исполнительного директора компании Aeryon Labs Дейва Кроэтча, их БАК является экономически выгодной альтернативой другим системам предоставления ситуационной информации в реальном времени. Он пояснил: «Системы вертикального взлета и посадки и не требуют какого-либо дополнительного оборудования запуска и возвращения. Они управляются одним оператором и поэтому другие члены группы могут сосредоточиться на других задачах, то есть БАК становится средством повышения боевой эффективности. Видео в реальном времени может передаваться в командный центр и на другие устройства в сети».

Компания недавно показала для своего SKYRANGER новое устройство передачи изображений Aeryon HDZoom30, которое, по словам Кроэтча, обеспечивает «беспрецедентные аэроразведывательные возможности, а это очень важно для успеха операции. Мы получаем систему с БЛА со стабильными и надежными летными характеристиками, которая может находиться в воздухе до 50 минут и которая имеет надежный цифровой видеоканал в реальном времени ».

Тем временем, Управление перспективных оборонных исследований DARPA изучает технологию, которая бы помогала мини-БЛА и микро-БЛА летать в пространстве с интенсивным помехами независимо от прямого управления человеком и без зависимости от навигации по координатам GPS. В начале этого года официально была начата программа FLA (Fast Lightweight Autonomy – быстрая легкая автономность), предусматривающая изучение биомиметической информации касательно маневренных способностей птиц и летающих насекомых. Хотя DARPA использует небольшой шестивинтовой аппарат массой всего 750 грамм в качестве тестовой платформы, программа всё же будет сосредоточена на разработке алгоритмов и программного обеспечения, которые можно будет интегрировать в небольшие БЛА любого типа.

«В Управлении надеются, что разработанное программное обеспечение, позволит БЛА работать в ряде пространств, к которым обычно доступ был запрещен, яркий тому пример – внутренние помещения. Небольшие БЛА, например, оказались полезными при проведении ближней разведки развернутыми патрулями, но они, однако, неспособны дать информацию об обстановке в здании, что зачастую является критическим моментом всей операции», – пояснил представитель DARPA.

Программой предусматривается достижение следующих характеристик: работа на скоростях до 70 км/ч, дальность действия 1 км, продолжительность работы 10 минут, работа без опоры на средства связи или GPS, вычислительные мощности 20 Ватт.

Начальные демонстрации намечены на начало 2016 года в виде «слаломных тестов на открытом воздухе», после чего в 2017 году пройдут испытания в помещениях.




Современный, доступный по средствам мини-БЛА BIRD-EYE-650 компании IAI обеспечивает видеоданные в реальном времени днем и ночью при проведении городских операций и разведки в тылу противника

Что касается развития бортовых сенсоров и систем, то общая тенденция заключается в постоянном уменьшении размеров сенсоров. На выставке Aero India 2015Компания Controp Precision Technologies показала свою станцию оптической видовой разведки Micro-STAMP (stabilised miniature payload – стабилизированная миниатюрная аппаратура). Станция массой менее 300 грамм, в состав которой входят дневная цветная ПЗС-камера, неохлаждаемый тепловизор и лазерный указатель, предназначена для установки на мини-БЛА.

Стабилизированная станция создавалась для проведения разведывательных задач в глубине и отличается различными функциями, включая наблюдение, инерциальное слежение за целью, удержание координат, прибытие к координатам, сканирование/аэрофотосъемку и режим «окно пилота».

Станция размерами 10 см x 8 см, специально упрочненная для жестких посадок, может устанавливаться в носу или под фюзеляжем. Дневная камера базируется на технологии CMOS (Complementary Metal-Oxide Semi-conductor – комплиментарная структура металл-оксид-полупроводник), а тепловизор работает в диапазоне 8-14 нм. По данным компании Controp, станция уже была проверена в подразделениях израильской армии, кроме того, в 2016 году планируется разработать более крупный вариант массой 600 грамм.


Военнослужащий американской армии подготавливает микро-БЛА InstantEye II для ведения наблюдения по другую сторону возвышенности во время общевойсковых учений в Форт Беннинге в мае 2015 года

Борьба с малоразмерными БЛА

Одно из самых важных преимуществ применения мини- и микро-БЛА заключается в том, что они способны выполнять разведывательные задачи, оставаясь необнаруженным, их не могут обнаружить радары ПВО и наземные РЛС, запрограммированные на захват более крупных воздушных аппаратов.

Впрочем, после применения малоразмерных БЛА боевиками различного толка во время проведения военных операций в Израиле и Ливии военные и промышленность в настоящее время занялись этой угрозой и начали разработку специальной технологии, которая позволит идентифицировать, отслеживать и нейтрализовывать мини- и микро-БЛА.

На парижском авиасалоне в 2015 году компания Controp Precision Technologies показала свой легкий тепловизор с быстрым сканированием Tornado, способный обнаруживать и отслеживать мини-БЛА на малых высотах, летающих с различными скоростями. Матрица, работающая в средневолновой ИК-области спектра, обеспечивает круговой обзор на все 360°, она способна определять малейшие изменения в пространстве, связанные с полетами небольших БЛА, как самолетной, так и вертолетной схем. Вице-президент компании пояснил: «Дроны становятся все более распространенными, они представляют собой новые угрозы для личной безопасности. Большая часть систем ПВО на базе радаров не способна определить угрозу малоразмерных дронов, летающих ниже 300 метров. Tornado панорамно сканирует очень большую зону с высокой скоростью, используя сложные алгоритмы для обнаружения очень небольших изменений в обстановке. Tornado недавно был испытан на способность обнаруживать и отслеживать даже самые небольшие и низколетающие дроны».

Сообщается, что система способна определять малоразмерные БЛА на дистанциях «от нескольких сотен метров» до «десятков километров», но, стоит отметить, что, учитывая общую концепцию операций, которая предусматривает использование платформ подобного класса в городских условиях, такие возможности окажутся просто невостребованными.

Тепловизионная система Tornado может использоваться как самостоятельное устройство или интегрироваться в различные системы ПВО. В нее встроена автоматическая система звукового и визуального предупреждения для извещения оператора о любом вторжении в бесполетную зону. Впрочем, с целью нейтрализации угрозы эта система должна передавать сигнал либо в систему электронного противодействия, либо в систему вооружения.

Подобное решение в настоящее время предлагается консорциумом британских компаний (Blighter Systems, Chess Dynamics и Enterprise Control Systems), который разработал систему наблюдения и радиочастотного подавления БЛА.

Британский консорциум недавно объявил о разработке системы для борьбы с небольшими БПЛА, получившую название Anti-UAV Defence System (AUDS). Компании Blighter Surveillance Systems, Chess Dynamics и Enterprise Control Systems (ECS) специально объединились с целью совместной разработки этой системы борьбы с беспилотниками.

Исполнительный директор компании Blighter Surveillance Systems Марк Редфорд в одном из интервью пояснил, что работа системы AUDS происходит в три этапа: обнаружение, сопровождение и локализация. Радар A400 Series Air Security Radar от Blighter используется для обнаружения БПЛА, обзорно-поисковая система дальнего действия Hawkeye от Chess Dynamics для сопровождения и, наконец, направленный радиочастотный глушитель от ECS работает в качестве нейтрализующего компонента.

Представители компаний сообщили, что система AUDS напрямую предназначена для борьбы с небольшими беспилотниками самолетного и вертолетного типа, например квадрокоптерами, и даже назвали некоторые подобные системы, которые можно просто купить в магазине.

Редфорд сказал, что эта система имеет преимущества перед аналогичными системами, поскольку в нее входят компоненты, проверенные в реальных условиях, например радар уже состоит на вооружении нескольких армий в виде наземной обзорной РЛС, которая там работает в очень зашумленном пространстве.

Расширенные испытания системы AUDS были проведены во Франции и Великобритании, об этом сообщил глава развития бизнеса в компании ECS Дейв Моррис. Система испытывалась против нескольких летательных аппаратов в сценариях приближенных к реальным; на сегодня в общей сложности проведено 80 часов испытаний и 150 вылетов.

Французское министерство обороны проводило испытания в марте 2015 года, в то время как британская лаборатория оборонной науки и техники проводила их в начале мая. Система AUDS в настоящее время направлена в США, где она будет продемонстрирована нескольким потенциальным американским и канадским операторам. Также намечено проведение испытаний в одной из стран Азиатско-Тихоокеанского региона.

Во время испытаний система продемонстрировала способность обнаруживать, отслеживать и нейтрализовывать цели всего за 15 секунд. Дальность нейтрализации составляет 2,5 км при почти мгновенном воздействии на цель.

Ключевой особенностью системы является способность радиочастотного глушителя настраиваться на определенные каналы передачи данных с точным необходимым уровнем воздействия. Например, глушитель может использоваться для глушения сигнала GPS, принимаемого БПЛА, или радиоканала контроля и управления. Также имеется потенциал для внедрения в систему возможности «перехвата», что позволит оператору AUDS «практически» взять на себя управление БПЛА. Работа глушителя заключается не только в том, чтобы «сбить» аппарат, его можно использовать просто для нарушения функциональности БПЛА для того, чтобы вынудить его оператора вывести свой аппарат из зоны.

Представители компаний признали, что самой сложной проблемой для системы AUDS может стать борьба с низколетящими БПЛА в городском пространстве, поскольку в этом случае имеется большое количество помех и большое количество отражающих поверхностей. Решение этой задачи будет являться целью дальнейшей разработки.

Хотя система отличается высокой степенью автоматизации в ряде аспектов, особенно при обнаружении и сопровождении, участие человека является ключевым в функционировании AUDS. Конечное решение нейтрализовывать цель или нет, и в какой степени, целиком ложится на оператора.

Технологии для радара заимствованы у наземных обзорных РЛС, состоящих на вооружении британской армии и также Южной Кореи, где они ведут мониторинг демилитаризованной зоны с Северной Кореей.

Доплеровский радар с непрерывным излучением с частотной модуляцией работает в режиме электронного сканирования и обеспечивает покрытие по азимуту 180° и по углу места 10° или 20° в зависимости от конфигурации. Он работает в диапазоне Ku и имеет максимальную дальность действия 8 км, может определять эффективную площадь отражения размером до 0,01 м2. Одновременно система может захватывать на сопровождение несколько целей.

Обзорно-поисковая система Hawkeye от Chess Dynamics устанавливается в одном блоке с радиочастотным глушителем и состоит из оптико-электронной камеры с высоким разрешением и охлаждаемого средневолнового тепловизора. Первая имеет горизонтальное поле зрения от 0,22° до 58°, а тепловизор от 0,6° до 36°. В системе используется цифровое следящее устройство Vision4ce, обеспечивающее непрерывное сопровождение по азимуту. Система способна непрерывно панорамировать по азимуту и наклоняться от -20° до 60° со скоростью 30° в секунду, сопровождая цели на дистанции около 4 км.

Многополосный радиочастотный глушитель от ECS отличается тремя встроенными направленными антеннами, которые образуют пучок шириной 20°. Компания приобрела большой опыт в разработке технологий борьбы с самодельными взрывными устройствами. Об этом рассказал представитель компании, заметив, что несколько ее систем были развернуты коалиционными силами в Ираке и Афганистане. Он добавил, что в компании ECS знают уязвимости каналов передачи данных и как это использовать.

Сердцем системы AUDS является станция управления оператора, посредством которой можно управлять всеми компонентами системы. В нее входят дисплей слежения, главный экран управления и дисплей видеозаписи.

С целью расширения зоны наблюдения эти системы могут объединяться в сеть, будь это несколько полноценных систем AUDS или сеть радаров, соединенных с одним блоком «обзорно-поисковая система/глушитель». Также система AUDS потенциально может быть частью более крупной системы противовоздушной обороны, хотя компании пока не намереваются развивать это направление.

Исполнительный директор компании Enterprise Control Systems заметил следующее: «Почти каждый день происходят инциденты с БЛА и прорывы периметров безопасности, связанные с дронами. В свою очередь, система AUDS способна снять повышенные опасения в военных, правительственных и коммерческих структурах, связанные с малоразмерными БЛА».

«В то время как БЛА имеют много положительных сфер применения, ожидается, что они всё в большей степени будут использоваться для злодейских целей. Они могут нести камеры,

Реактивный ранец «Мартин джетпэк» стал результатом многолетней работы компании Martin Aircraft во главе с ее основателем инженером Гленном Мартином. Джетпэк - это устройство высотой и шириной около полутора метров и весом в 113 кг. Для изготовления исходного материала применяются углеродные композиты.

Аппарат поднимается в воздух с помощью двигателя мощностью 200 л/с (больше, чем у Honda Accord, к примеру), который приводит в движение два винта. Пилот с помощью двух рычагов может управлять набором высоты и ускорением аппарата. Джетпэк способен пролететь без остановки около 30 минут, развивая скорость до 100 км/ч. Впрочем, и топлива такой аггрегат расходует намного больше, чем легковой автомобиль - около 38 литров в час. Создатели устройства особенно подчеркивают его надежность: джетпэк оснащен системой безопасности и парашютом, необходимым в случае удара при посадке или сбое работы основного двигателя.

Идея о создании персонального реактивного устройства появилась около 80 лет назад. Предшественником джетпэка можно считать rocket pack, топливом для которого служила перекись водорода.

Первые устройства такого рода, например, jet vest («реактивный жилет») Томаса Мура, появились после Второй мировой войны и позволяли на несколько секунд приподнять пилота над землей. После этого начались многолетние разработки по заказу американских вооруженных сил. В апреле 1961 года, через неделю после полета Юрия Гагарина, пилот Гарольд Грэм совершил первый в истории полет с помощью персонального реактивного устройства и провел в воздухе 13 секунд.

Наиболее успешная модель реактивного ранца, Bell Rocket Belt , была изобретена в том же 1961 году. Предполагалось, что с помощью этого аппарата военные командиры смогут перемещаться по полю боя, проводя в полете уже до 26 секунд. Позднее военные сочли разработку невыгодной из-за высокого расхода топлива и сложностей в эксплуатации. Поэтому основное применение устройство получило в съемках фильмов и постановках шоу, в которых необычные полеты всегда вызывали всеобщий восторг.

Популярность Bell Rocket Belt достигла своего пика в 1965 году, когда на экраны вышел новый фильм Бондианы «Шаровая молния» , в котором знаменитому спецагенту удалвалось ускользнуть от преследователей с крыши замка именно с помощью такого устройства. С того времени появлялись всевозможные вариации моделей реактивных ранцев. Вскоре создали и первый гаджет с настоящим турбореактивным двигателем - Jet Flying Belt, который продлил полет до нескольких минут, но оказался чрезвычайно громоздким и небезопасным в использовании.

Идея создания своего джетпэка появилась у новозеландца Гленна Мартина еще в 1981 году. В процесс создания аппарата он вовлек и свою семью: жену и двоих сыновей. Именно они выступали в качестве пилотов на первых тестовых запусках устройства в их семейном гараже. В 1998 году специально для разработки новой версии аппарата была образована компания Martin Aircraft. Ее сотрудники, а также исследователи из университета Кентербери помогли изобретателю достичь желаемого результата. В 2005 году после выпуска нескольких пробных моделей разработчики смогли добиться устойчивости устройства во время полета - и уже через 3 года успешно провели первый показательный полет на авиашоу в американском городе Ошкош.

В начале 2010 Mаrtin Aircraft объявила о выпуске первых 500 моделей, каждая из которых обойдется покупателю в 100 000 долларов. Как полагает компания, с ростом производства и продаж джетпэк будет стоить примерно как средний автомобиль. В этом же году журнал Time назвал Martin Jetpack одним из лучших изобретений 2010 года. Стартовые продажи уже начались - по словам разработчиков, компания уже получила уже более 2500 запросов.

Из-за малого веса устройства пилоту джетпэка не требуется лицензия на полеты в США (условия могут отличаться в других странах). Тем не менее, перед запуском предусмотрен обязательный обучающий курс от Martin Aircraft.

«Если кто-то считает, что не будет покупать джетпэк, пока он не будет размером со школьный рюкзак, это его право, - рассказывает Мартин. - Но нужно понимать, что тогда он не сможет купить джетпэк на протяжении всей своей жизни».

Специальной системы регуляции подобного воздушного транспорта в США пока нет, однако, по сообщениям создателей, Федеральная администрация по авиации (FAA) разрабатывает проект введения ЗD-магистралей в небе, основанных на сигналах GPS.