Основы математической логики.

Введение

Тема контрольной работы «Математическая логика».

БУЛЬ или БУЛ, а также БУУЛ, Джордж (1815-1864) – английский математик, который считается основоположником математической логики.

Математическая логика – это раздел математики, посвященный анализу методов рассуждений, при этом в первую очередь исследуются формы рассуждений, а не их содержание, т.е. исследуется формализация рассуждений.

Формализация рассуждений восходит к Аристотелю. Современный вид аристотелева (формальная) логика приобрела во второй половине XIX века в сочинении Джорджа Буля “Законы мысли”.

Интенсивно математическая логика начала развиваться в 50-е годы XX века в связи с бурным развитием цифровой техники.

1. Элементы математической логика

Основными разделами математической логики являются исчисление высказываний и исчисление предикатов.

Высказывание – есть предложение, которое может быть либо истинно, либо ложно.

Исчисление высказываний – вступительный раздел математической логики, в котором рассматриваются логические операции над высказываниями.

Предикат – логическая функция от п переменных, которая принимает значения истинности или ложности.

Исчисление предикатов – раздел математической логики, объектом которого является дальнейшее изучение и обобщение исчисления высказываний.

Теория булевых алгебр (булевых функций) положена в основу точных методов анализа и синтеза в теории переключательных схем при проектировании компьютерных систем.

1.1 Основные понятия алгебры логики

Алгебра логики – раздел математической логики, изучающий логические операции над высказываниями.

В алгебре логики интересуются лишь истинностным значением высказываний. Истинностные значения принято обозначать:

1 (истина) 0 (ложь).

Каждой логической операции соответствует функция, принимающая значения 1 или 0, аргументы которой также принимают значения 1 или 0.

Такие функции называются логическими или булевыми, или функциями алгебры логики (ФАЛ). При этом логическая (булева) переменная x может принимать только два значения:

.

Таким образом,

- логическая функция, у которой логи-ческие переменные являются высказываниями. Тогда сама логическая функция является сложным высказыванием.

В этом случае алгебру логики можно определить, как совокупность множества логических функций с заданными в нем всевозможными логическими операциями. Таким логическим операциям, как конъюнкция (читается И) , дизъюнкция (ИЛИ ), импликация, эквивалентность, отрицание (НЕ) , соответствуют логические функции, для которых приняты обозначения

(&, ·), ~, – (), и имеет место таблица истинности:
x~y
0 0 0 0 1 1 1
0 1 0 1 1 1 0
1 0 0 1 0 0 0
1 1 1 1 1 0 1

Это табличный способ задания ФАЛ. Наряду с ними применяется задание функций с помощью формул в языке, содержащем переменные x , y , …, z (возможно индексированные) и символы некоторых конкретных функций – аналитический способ задания ФАЛ.

Наиболее употребительным является язык,содержащий логические символы

~, –. Формулы этого языка определяются следующим образом:

1) все переменные есть формулы;

2) если P и Q – формулы, то

P ~ Q , - фор-мулы.

Например, выражение

~ - формула. Если переменным x , y , z придать значения из двоичного набора 0, 1 и провести вычисления в соответствии с операциями, указанными в формуле, то получим значение 0 или 1.

Говорят, что формула реализует функцию. Так формула

~ реализует функцию h (x , y , z ):
x y z h (x, y, z )
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Пусть P и Q – формулы, которые реализуют функции f (x 1 , x 2 , …, x n ) и g (x 1 , x 2 , …, x n ). Формулы равны: P = Q , если функции f и g совпадают, т.е. совпадают их таблицы истинности. Алгебра, основным множеством которой является все множество логических функций, а операциями – дизъюнкция, конъюнкция и отрицание, называется булевой алгеброй логических функций.

Приведем законы и тождества, определяющие операции

– и их связь с операциями , ~:

1. Идемпотентность конъюнкции и дизъюнкции:

.

2. Коммутативность конъюнкции и дизъюнкции:

.

3. Ассоциативность конъюнкции и дизъюнкции:

.

4. Дистрибутивность конъюнкции относительно дизъюнкции и дизъюнкции относительно конъюнкции:


.

5. Двойное отрицание:

.

6. Законы де Моргана:

=, =.

7. Склеивание:

.

8. Поглощение

.

9. Действия с константами 0 и 1.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет физико-математических и компьютерных наук

Кафедра математики


Контрольная работа на тему:

«История развития математической логики»


Выполнила:

Студентка 2 курса

группы МФ-2

Понамарева Виктория Сергеевна

Научный руководитель:

к. ф.-м. н., доцент

Ершова Александра Алексеевна


Липецк, 2014



Введение

§1. История возникновения математической логики

§2. Применение математической логики

§3. Математическая логика в технике

§4. Математическая логика в криптографии

§5. Математическая логика в программировании

Заключение

Список используемой литературы

математическое обозначение криптография логика программирование


Введение


Логика <#"center">§1. История возникновения математической логики


Математическая логика тесно связана с логикой и обязана ей своим возникновением. Основы логики, науки о законах и формах человеческого мышления (отсюда одно из ее названий - формальная логика), были заложены величайшим древнегреческим философом Аристотелем (384-322 гг. до н. э.), который в своих трактатах обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего. Вклад Аристотеля в логику весьма велик, недаром другое ее название - Аристотелева логика. Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить две эти науки, а именно свести размышление, или, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатов Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств.

В дальнейшем многие философы и математики развивали отдельные положения логики и иногда даже намечали контуры современного исчисления высказываний, но ближе всех к созданию математической логики подошел уже во второй половине XVII века выдающийся немецкий ученый Готфрид Вильгельм Лейбниц (1646 - 1716), указавший пути для перевода логики «из словесного царства, полного неопределенностей, в царство математики, где отношения между объектами или высказываниями определяются совершенно точно» . Лейбниц надеялся даже, что в будущем философы, вместо того чтобы бесплодно спорить, станут брать бумагу и вычислять, кто из них прав. При этом в своих работах Лейбниц затрагивал и двоичную систему счисления.

Следует отметить, что идея использования двух символов для кодирования информации очень стара. Австралийские аборигены считали двойками, некоторые племена охотников-сборщиков Новой Гвинеи и Южной Америки тоже пользовались двоичной системой счета. В некоторых африканских племенах передают сообщения с помощью барабанов в виде комбинаций звонких и глухих ударов. Знакомый всем пример двухсимвольного кодирования - азбука Морзе, где буквы алфавита представлены определенными сочетаниями точек и тире.

После Лейбница исследования в этой области вели многие выдающиеся ученые, однако настоящий успех пришел здесь к английскому математику-самоучке Джорджу Булю (1815-1864), целеустремленность которого не знала границ. Материальное положение родителей Джорджа (отец которого был сапожным мастером) позволило ему окончить лишь начальную школу для бедняков. Спустя какое-то время Буль, сменив несколько профессий, открыл маленькую школу, где сам преподавал. Он много времени уделял самообразованию и вскоре увлекся идеями символической логики. В 1847 году Буль опубликовал статью «Математический анализ логики, или Опыт исчисления дедуктивных умозаключений», а в 1854 году появился главный его труд «Исследование законов мышления, на которых основаны математические теории логики и вероятностей».

Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ).

Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключательных схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в XX столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера.

Отдельные положения работ Буля в той или иной мере затрагивались и до, и после него другими математиками и логиками. Однако сегодня в данной области именно труды Джорджа Буля причисляются к математической классике, а сам он по праву считается основателем математической логики и тем более важнейших ее разделов - алгебры логики (булевой алгебры) и алгебры высказываний.

Большой вклад в развитие логики внесли и русские ученые П.С. Порецкий (1846-1907), И.И. Жегалкин (1869-1947).

В XX веке огромную роль в развитии математической логики сыграл Д. Гильберт (1862-1943), предложивший программу формализации математики, связанную с разработкой оснований самой математики. Наконец, в последние десятилетия XX века бурное развитие математической логики было обусловлено развитием теории алгоритмов и алгоритмических языков, теории автоматов, теории графов (С.К. Клини, А. Черч, А.А Марков, П.С. Новиков, Гегель и многие другие).

Гегель (1770-1831) весьма иронично отзывался о законе противоречия и законе исключенного третьего. Последний он представлял, в частности, в такой форме: "Дух является зеленым или не является зеленым", и задавал "каверзный" вопрос: какое из этих двух утверждений истинно? Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: "Дух зеленый" и "Дух не зеленый" не является истинным, поскольку оба они бессмысленны. Закон исключенного третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно. Гегелевская критика логических законов опиралась, как это нередко бывает, на придание им того смысла, которого у них нет, и приписывание им тех функций, к которым они не имеют отношения. Случай с критикой закона исключенного третьего - один из примеров такого подхода. Критика закона исключенного третьего (Л.Бауэр) привела к созданию нового направления в логике - интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди отброшенных, например, оказывается доказательство путем приведения к противоречию, или абсурду.

Обращаю внимание на суть любой критики законов формальной логики: все сторонники концепции "расширения" формальной логики сдвигают центр тяжести логических исследований с изучения правильных способов рассуждения на разработку каких-либо конкретных проблем: теории познания, причинности, индукции и т.д. В логику вводятся темы, интересные и важные сами по себе, но не имеющие отношения к собственно формальной логике, как к набору приемов правильного мышления. Закон исключенного третьего, не рассматривая самих противоречий, запрещает признавать одновременно истинным или одновременно ложным два противоречащих друг другу суждения. В этом и состоит его смысл.

Вывод: нельзя уклоняться от признания истинным одного из двух противоречащих друг другу высказывай и искать нечто третье между ними.

Результат применения: достигается однозначность логического мышления.

Четвертый закон - закон достаточного основания

Формулировка: всякая истинная мысль имеет достаточное основание.

Комментарий: Этот закон фактически заявляет то, что все мысли которые можно объяснить, считаются истинными, а те которые объяснить нельзя - ложными. В логике высказываний этот закон формулы не имеет, так как он имеет содержательный характер. На этом стоит остановиться несколько подробней:

Достаточным, т. е. действительным, невымышленным основанием наших мыслей может являться индивидуальная практика. Действительно, истинность некоторых суждений подтверждается путем их непосредственного сопоставления с фактами действительности (Пример: "[Истинно, что]Идет дождь", "[Является ложью то, что]Я был в Акапулько"). Но личный опыт ограничен. Поэтому в реальной деятельности всегда приходится опираться на опыт других людей. Благодаря развитию научных знаний субъект использует в качестве оснований своих мыслей опыт предшественников, закрепленный в законах и аксиомах науки, в принципах и положениях, существующих в любой области человеческой деятельности. Для подтверждения какого-либо частного случая нет необходимости обращаться к его практической проверке, обосновывать его при помощи личного опыта. Если, например, мне известен закон Архимеда, то мне совсем не обязательно искать ванну с водой, чтобы, поместив туда предмет, выяснить, сколько он потерял в весе. Закон Архимеда будет достаточным основанием для подтверждения этого частного случая.

Целью науки является не только добывание знания, но и его передача. Именно поэтому недопустимы никакие логические огрехи в формальном представлении уже добытого знания. Таким образом - знание должно быть логически контролируемым. Именно это оптимально для его сохранения, передачи и развития. И именно поэтому научное знание, как совокупность уже доказанных логических предложений, может служить основанием для последующих доказательных рассуждений.

Закон достаточного основания фактически сводится к следующему требованию: "всякое суждение, прежде чем быть принятым за истину, должно быть обосновано". Таким образом из этого закона вытекает, что при правильном рассуждении ничто не должно приниматься просто так, на веру. В каждом случае каждого утверждения следует указывать основания, в силу которых оно считается истинным. Как видим - закон достаточного основания изначально выступает, как методологический принцип, обеспечивающий способность мышления поставлять основания к последующим рассуждениям. Ведь все, что уже корректно доказано, можно положить в основу последующим доказательствам.

Вывод: достаточным основанием какой либо мысли может быть любая другая, уже проверенная и признанная истинной мысль, из которой вытекает истинность рассматриваемой мысли.

Результат применения: закон обеспечивает обоснованность мышления. Во всех случаях, когда мы утверждаем что-либо, мы обязаны доказать свою правоту, т.е. привести достаточные основания, подтверждающие истинность наших мыслей.


§2. Применение математической логики


Объединение математико-логической установки с иными математическими подходами, прежде всего с вероятностно-статистическими идеями и методами - на фоне глубокого интереса к вычислительным приборам, - было во многом определяющим в формировании замысла кибернетики, как комплексного научного направления, имеющего своим предметом процессы.

В ряде случаев используется технический аппарат математической логики (синтез релейно-контактных схем); сверх того, что особенно важно, идеи математической логики это, конечно же, в теории алгоритмов, но также и всей науки в целом и свойственный ей стиль мышления оказали и продолжают оказывать очень большое влияние на те своеобразные области деятельности, содержанием которых является автоматическая переработка информации (информатика), использование в криптографии и автоматизация процессов управления (кибернетика).

Информатика - это наука, которая изучает компьютер, а также взаимодействие компьютера с человеком.

Строительство логических машин - интересная глава истории логики и кибернетики. В ней запечатлены первые проекты создания искусственного разума и первые споры о возможности этого. Идея логических машин появилась в 13 веке у испанского схоластика Раймунда Луллия, рассматривалась затем Лейбницем и получило новое развитие в 19 веке, после возникновения математической логики. В 1870 году английский философ и экономист Вильям Стэнли Джевонс построил в Манчестере логическое пианино, которое извлекало из алгебраически записанных посылок следствия, выделяя допустимые комбинации терминов. Это называют также разложением высказываний на конституанты. Важно отметить возможность практического применения логической машины для решения сложных логических задач.

Современные универсальные вычислительные машины являются вместе с тем логическими машинами. Именно введение логических операций сделало их такими гибкими; оно же позволяет им моделировать рассуждения. Таким образом, арифметическая ветвь разумных автоматов соединились с логической. В 20-е годы, однако, формальная логика представлялась слишком абстрактной о метафизической для приложения к жизни. Между тем уже тогда можно было предвидеть внедрение логических исчислений в технику.

Математическая логика облегчает механизацию умственного труда. Нынешние машины выполняют гораздо более сложные логические операции, нежели их скромные прототипы начала века.

Проблема искусственного разума сложна и многогранна. Вероятно, не ошибёмся, если скажем, что окончательные границы механизации мысли можно установить лишь экспериментальным путём. Заметим ещё, что в современной кибернетики обсуждается возможность моделирования не только формальных, но и содержательных мыслительных процессов.


§3. Математическая логика в технике


Роль логической обработки бинарных данных на современном этапе развития вычислительной техники существенно возросла. Это связано, в первую очередь, с созданием технически систем. реализующих в том или ином виде технологии получения и накопления знаний, моделированием отдельных интеллектуальных функций человека. Ядром таких систем являются мощные ЭВМ и вычислительные комплексы. Кроме того, существует большой класс прикладных задач, которые можно свести к решению логических задач, например, обработка и синтез изображений, транспортные задачи. Требуемая производительность вычислительных средств достигается путем распараллеливания и конвейеризации вычислительных процессов. Это реализуется, как правило, на основе сверхбольших интегральных, схем (СБИС). Однако технология СБИС и их структура предъявляет ряд специфических требований к алгоритмам, а именно: регулярность, параллельно - поточная организация вычислений, сверхлинейная операционная сложность (многократное использование каждого элемента входных данных), локальность связей вычислений, двумерность пространства реализации вычислений. Эти требования обусловливают необходимость решения проблемы эффективного погружения алгоритма в вычислительную среду, или, как еще принято говорить, - отображение алгоритма в архитектуру вычислительных средств. В настоящее время доказана ошибочность ранее широко распространенных взглядов, состоящих в том, что переход на параллельно -конвейерные архитектуры ЭВМ потребуют лишь небольшой модификации известных алгоритмов. Оказалось, что параллелилизм и конвейеризация вычислительных процессов требует разработки новых алгоритмов даже для тех задач, для которых существовали хорошо изученные и апробированные методы и алгоритмы решения, но ориентированные на последовательный принцип реализации. По прогнозам специалистов, в ближайшее десятилетие следует ожидать появления новых концепций построения вычислительных средств. Основанием для прогнозов являются результаты проводимых в настоящее время перспективных исследований, в частности, в области биочипов и органических переключающих элементов. Некоторые направления ставят своей целью создание схем в виде слоев органических молекул и пленок с высокоразвитой структурой. Это позволит, по мнению исследователей, выращивать компьютеры на основе генной инженерии и усилить аналогию между элементами технических систем и клетками мозга. Тем самым реальные очертания приобретают нейрокомпьютеры, которые имитируют интеллектуальные функции биологических объектов, в том числе человека. По-видимому, молекулярная электроника станет основой для создания ЭВМ шестого поколения. Все это объективно обусловливает интенсивные работы по методам синтезов алгоритмов обработки логических данных и их эффективному погружению в операционную среду бинарных элементов. Очевидно, что бинарные элементы и бинарные данные наиболее полно соответствуют друг другу в плане представления и обработки последних на таких элементах, если рассматривать их по отдельности. Действительно, положим, алгебра логики над числами (0,1) реализуется на бинарном элементе полном использовании его операционного ресурса. Другими словами, ставится вопрос об эффективности, а иногда вообще возможности реализации данного алгоритма на такой сети (структуре). В этом состоит суть погружения алгоритма в структуру.


§4. Математическая логика в криптографии


Криптография изучает методы пересылки сообщений в замаскированном виде, при которых только намеченные отправителем получатели могут удалить маскировку и прочитать сообщение. Общая схема защиты информации представлена на рисунке 2. Этап кодирования от ошибок основан на внесении в передаваемое сообщение избытка информации, достаточного для преодоления помех на линии связи. Например, допустим, передается последовательность символов типа 0 и 1. При этом в сети связи с некоторой вероятностью могут происходить ошибки приема сигнала 0 вместо сигнала 1 или наоборот, тогда кодер на каждый символ ai сообщения передает пятью импульсами 00000, если ai -0 и наоборот. На приемном конце принимаемая последовательность импульсов разбивается по пять импульсов, называемая блоками. Если в принятом блоке содержится 2 и менее импульса 0, то принимается решение о том, что передавался символ ai-1. Таким образом, исходная вероятность ошибки будет значительно снижена. Более элегантные методы кодирования, которые при достаточной надежности позволяют вносить не такой большой избыток информации. Для выражения в информации требуется ввести некоторый алфавит, из которого будет состоять сообщение (конечные упорядоченные множества из этих символов). Обозначим через A - мощность выбранного алфавита. Будем также считать, что все множества информации или, что то же самое, множество всевозможных сообщений конечно. В качестве меры информации в сообщении данной длины можно взять log2 от числа всевозможных сообщений конечно. Тогда объем информации, падающий на один символ алфавита X=log2a. Далее имеем дело со словами длинной S, тогда всего таких слов будет N=AS (декартова S- степень алфавита), а следовательно, количество информации в слове Y=Log2N=Log2As=SX. Львиную долю криптоанализа составляют методы, построенные на вероятностном анализе криптограммы и предлагаемого исходного языка. Поскольку всякий обычный язык имеет избыток информации, причем неравномерно размешенных в словах, то буквы алфавита этого языка могут иметь устойчивые частные характеристики. Например, в английском языке - это часто повторяющая буква e, кроме того, частотными характеристиками могут быть буквосочетания и их комбинации. Общая схема криптосистемы с секретным ключом изображена на рисунке 3. Здесь Х - открытый текст, Y- шифр текста, K - ключ шифра, R - рандомизирующая последовательность.


§5. Математическая логика в программировании


Функция одного аргумента - это правило, ставящее соответствие любому значению, лежащему в области изменения этого аргумента (которая будет и областью определения этой функции), другую величину, лежащую в области значений функции.

Понятие функции было перенесено в языки программирования. В языке программирования, как правило, предусмотрен ряд встроенных функций, например sin, cos, sqrt и т.д. Кроме того, программист имеет возможность определять свои собственные функции. Они могут работать не только с вещественными числами, но и с различными типами данных, включающими обычно integer (целое), real (вещественное), boolean (булевское), character (строковое). Они могут также работать со структурами. В языках Паскаль, Алгол=68 и ПЛ/1 имеются, например, типы records (записи), arrays (массивы), lists (списки), files of records (файлы, состоящие из записей), а значениями функций могут быть указатели этих структур. Все это согласовано с понятием области определения, вне которой функция не определена. В языках программирования эта область задана обычно указанием типа данных, который является некоторым множеством величин. Так, в Паскале компилятор должен следить за тем, чтобы никакая функция не применялась к величине неподходящего типа, которая могла бы выйти за пределы области определения функции.

Функция многих аргументов. Теперь нужно обобщить определение, чтобы охватить функции многих аргументов. Для этого соберем n аргументов в упорядоченный набор, который будем рассматривать как один аргумент. Возьмем функцию вычитания diff(x.y). Трактуется ее как отображение пар <х,у> в целые числа. В виде множества упорядоченных пар ее можно записать следующим образом: diff = {<<5,3>, 2>. <<6,3>, 3>, <<4,5>, -1>...} Если бы вместо этого у нас была функция четырех аргументов h(x,y,z,w), то использовали бы отображение, определенное на четверках . Этот прием используется и в программировании. Если необходимо уменьшить количество аргументов процедуры или функции (причем все они имеют один и тот же тип), то в Фортране можно записать эти значения в массив и передать в качестве параметра этот массив, а не отдельные значения. В более общем случае (например, в Паскале), когда аргументам разрешается иметь различные типы, можно передать в качестве параметра запись и хранить значения в виде отдельных компонент этой записи. В действительности набор, состоящий из n элементов в математике соответствует записи в программировании. Каждая из ее компонент берется из своей отдельной области, как и в случае записи. Единственное отличие состоит в том, что компонента определяется своим расположением (позицией), а не именем. Реляционная модель данных работает с множествами упорядоченных наборов, которые соответствуют файлам записей, хранящимся в машине. Также математическая логика используется и в других областях информатики - это в разработке в области моделирования и автоматизации интеллектуальных процедур - направление так называемого искусственного интеллекта.


Заключение


Математическая логика немало способствовала бурному развитию информационных технологий в XX веке, но из ее поля зрения выпало понятие "суждение", которое появилось в логике еще во времена Аристотеля и на котором, как на фундаменте, держится логическая основа естественного языка. Такое упущение отнюдь не способствовало развитию логической культуры общества и у многих даже породило иллюзию, что компьютеры способны мыслить не хуже самого человека. Многих даже не смущает то обстоятельство, что на фоне всеобщей компьютеризации в преддверии третьего тысячелетия логические нелепости в пределах самой науки (я уж не говорю о политике, законотворческой деятельности и о псевдонауке) встречаются даже чаще, чем в конце XIX века. И для того, чтобы понять суть этих нелепостей, нет необходимости обращаться к сложным математическим структурам с многоместными отношениями и рекурсивными функциями, которые применяются в математической логике. Оказывается, для понимания и анализа этих нелепостей вполне достаточно применить намного более простую математическую структуру суждения, которая не только не противоречит математическим основам современной логики, но в чем-то дополняет и расширяет их.


Список используемой литературы


1.Игошин, В.И. Математическая логика и теория алгоритмов [Текст] / В.И. Игошин. - М.: Академия, 2008. - 448 с.; с ил.

Стяжкин, Н.И. Формирование математической логики [Текст] / Н.И. Стяжкин. - М.: Наука, 1967. - 508 с.; с ил.

Марков, А.А. Элементы математической логики [Текст] / А.А. Марков. - М.: МГУ, 2004. - 310 с.; с ил.

Карри, Х.Б. Основания математической логики [Текст]/Х.Б. Карри. - М.: Мир, 1969. - 568 с.; с ил.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

математическая логика - ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по видимому, впервые… … Энциклопедия эпистемологии и философии науки

МАТЕМАТИЧЕСКАЯ ЛОГИКА - Ее еще называют символической логикой. М. л. это та же самая Аристотелева силлогистическая логика, но только громоздкие словесные выводы заменены в ней математической символикой. Этим достигается, во первых, краткость, во вторых, ясность, в… … Энциклопедия культурологии

МАТЕМАТИЧЕСКАЯ ЛОГИКА - МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений … Современная энциклопедия

МАТЕМАТИЧЕСКАЯ ЛОГИКА - дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике … Большой Энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики. Рассматривает понятия, которые могут быть истинными или ложными, связь между понятиями и оперирование ими, включая… … Научно-технический энциклопедический словарь

МАТЕМАТИЧЕСКАЯ ЛОГИКА - один из ведущих разделов современной логики и математики. Сформировался в 19 20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями.… … Новейший философский словарь

математическая логика - сущ., кол во синонимов: 1 логистика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

математическая логика - — Тематики электросвязь, основные понятия EN mathematical logic … Справочник технического переводчика

МАТЕМАТИЧЕСКАЯ ЛОГИКА - теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… … Математическая энциклопедия

Книги

  • Математическая логика , Ершов Юрий Леонидович, Палютин Евгений Андреевич. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории… Купить за 1447 грн (только Украина)
  • Математическая логика , Ершов Ю.Л.. В книге изложены основные классические исчисления математической логики: исчисление высказываний и исчисление предикатов; имеется краткое изложение основных понятий теории множеств и теории…

МАТЕМАТИЧЕСКАЯ ЛОГИКА

теоретическая логика, символическая логика,- раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики.

Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе такого языка математич. доказательств выдвигалась в 17 в. Г. Лейбницем (G. Leibniz). Но только в сер. 19 в. появились первые научные работы по алгебраизации аристотелевод логики [Дж. Буль (G. Boole, 1847) и О. де Морган (A. de Morgan, 1858)]. После того как Г. Фреге (G. Frege, 1879) и Ч. Пирс (С. Peirce, 1885) ввели в язык алгебры логики предикаты, предметные переменные и кванторы, возникла реальная возможность применить этот язык к вопросам оснований математики.

С другой стороны, создание в 19 в. неевклидовой геометрии сильно поколебало уверенность математиков в абсолютной надежности геометрич. интуиции, на к-рой была основана . Сомнениям в надежности геометрич. интуиции способствовало также то, что в результате развития исчисления бесконечно малых математики натолкнулись на неожиданные примеры всюду непрерывных функций без производных. Появилась потребность отделить понятие действительного числа от неясного понятия "величины", к-рое было основано на геометрич. интуиции. Эта задача была решена разными путями в работах К. Вейерштрасса (К. Weierstrab, P. Дедекинда (R. Dedekind) и Г. Кантора (G. Cantor). Они показали возможность "арифметизации" анализа и теории функций, в результате чего в качестве фундамента всей классич. математики стала рассматриваться целых чисел. Затем была предпринята аксиоматизация арифметики [Р. Дедекинд (1888) и Дж. Пеано (G. Реаnо, 1891)]. При этом Дж. Пеано создал более удобную символику для логич. языка. Пвзже этот язык был усовершенствован в совместном труде Б. Рассела (В. Russell) и А. Уайтхеда (A. Whitehead) "Принципы математики" (1910), где была предпринята попытка сведения всей математики к логике. Но эта попытка не увенчалась успехом, т. к. оказалось невозможным вывести из чисто логич. аксиом существование бесконечных множеств. Хотя логистич. Фреге - Рассела в основаниях математики так и не достигла своей главной цели - сведения математики к логике, в их работах был создан богатый логич. аппарат, без к-рого оформление М. л. как полноценной математич. дисциплины было бы невозможно.

На рубеже 19-20 вв. были обнаружены антиномии, связанные с основными понятиями теории множеств. Наиболее сильное впечатление на современников произвела опубликованная в 1903 Рассела. Пусть Месть всех таких множеств, каждое из к-рых не является своим собственным элементом. Легко убедиться, что Мявляется своим элементом тогда и только тогда, когда Мне является своим элементом. Конечно, можно пытаться выйти из создавшегося противоречия, сделав заключение, что такого множества Мне бывает. Однако, если не может существовать множество, состоящее в точности из всех элементов, удовлетворяющих такому четко определенному условию, к-рое мы имеем в приведенном выше определении множества М, то где гарантия того, что в нашей повседневной работе мы не столкнемся с множествами, к-рые также не могут существовать? И каким, вообще, условиям должно удовлетворять определение множества для того, чтобы оно существовало? Ясно было одно: нужно как-то ограничить канторовскую теорию множеств.

Л. Брауэр (L. Brouwer, 1908) выступил против применения правил классич. логики к бесконечным множествам. В выдвинутой им интуиционистской программе предлагалось отказаться от рассмотрения абстракции актуальной бесконечности, т. е. бесконечных множеств как завершенных совокупностей! Допуская существование сколь угодно больших натуральных чисел, интуиционисты выступают против рассмотрения натурального ряда как завершенного множества. Они считают, что в математике всякое существования того или иного объекта должно быть конструктивным, т. е. должно сопровождаться построением этого объекта. Если предположение о том, что искомый не существует, приведено к противоречию, то это, по мнению интуиционистов, не может рассматриваться как доказательство существования. Особой критике со стороны интупционистов подвергся исключенного третьего закон. Ввиду того, что этот закон первоначально рассматривался применительно к конечным множествам и, учитывая, что многие свойства конечных множеств не выполняются для бесконечных множеств (напр., что всякая собственная часть меньше целого), интуиционисты считают неправомерным применение этого закона к бесконечным множествам. Так, напр., чтобы утверждать, что проблема Ферма имеет положительное или имеет отрицательное решение, интуиционист должен указать соответствующее решение этой проблемы. А пока проблема Ферма не решена, эта считается неправомерной. Такое же требование предъявляется к пониманию всякой дизъюнкции. Это требование интуиционистов может создать затруднения и в случае рассмотрения задач, связанных с конечными множествами. Представим себе, что кто-то, закрыв глаза, достает из урны, в к-рой имеются три черных и три белых шара, и тут же бросает этот шар обратно. Если никто не видел этот шар, то мы не имеем возможности узнать, какого он был цвета. Однако вряд ли можно всерьез оспаривать утверждения, что этот шар был либо черного, либо белого цвета.

Интуиционисты построили свою математику, имеющую интересные своеобразные особенности. Но она оказалась более сложной и громоздкой, чем классич. . Положительный вклад интуиционистов в исследование вопросов оснований математики выразился в том, что они еще раз решительным образом подчеркнули различие между конструктивным и неконструктивным в математике, они провели тщательный анализ многих трудностей, с к-рыми столкнулась математика в своем развитии, и тем самым способствовали их преодолению.

Д. Гильберт (D. Hilbert, см. добавления VII-X в ) наметил другой преодоления трудностей, возникших в основаниях математики на рубеже 19-20 вв. Этот путь, основанный на применении аксиоматич. метода рассмотрения формальных моделей, содержательной математики и на исследовании вопросов непротиворечивости таких моделей надежными финитными средствами, получил в математике название финитизма Гильберта. Признавая ненадежность геометрич. интуиции, Д. Гильберт прежде всего предпринимает тщательный пересмотр евклидовой геометрии, освобождая ее от обращения к интуиции. Результатом такой переработки явились его "Основания геометрии" (1899).

Вопросы непротиворечивости различных теорий по существу рассматривались и до Д. Гильберта. Так, построенная Ф. Клейном (F. Klein, 1871) проективная неевклидовой геометрии Лобачевского сводит вопрос о непротиворечивости геометрии Лобачевского к непротиворечивости евклидовой геометрии. Непротиворечивость евклидовой геометрии аналогично можно свести к непротиворечивости анализа, т. е. теории действительных чисел. Однако не видно было, какими средствами можно строить модели анализа и арифметики для доказательства их непротиворечивости. Заслуга Д. Гильберта состоит в том, что он указал прямой путь для исследования этого вопроса. Непротиворечивость данной теории означает, что в ней не может быть получено , т. е. не может быть доказано нек-рое утверждение Аи его Д. Гильберт предложил представить рассматриваемую теорию в виде формальной аксиоматич. системы, в к-рой будут выводимы все те и только те утверждения, к-рые являются теоремами нашей теории. Тогда для доказательства непротиворечивости достаточно установить невыводимость в рассматриваемой теории нек-рых утверждений. Таким образом, математич. , непротиворечивость к-рой мы хотим доказать, становится предметом изучения нек-рой математич. науки, к-рую Д. Гильберт назвал метаматематикой, или теорией доказательств.

Д. Гильберт писал, что парадоксы теории множеств вызваны не законом исключенного третьего, а "скорее тем, что математики пользуются недопустимыми и бессмысленными образованиями понятий, к-рые в моей теории доказательств исключаются сами собой. ...Отнять у математиков закон исключенного третьего - это то же, что забрать у астрономов телескоп или запретить боксерам использовать кулаки" (см. с. 383). Д. Гильберт предлагает различать "действительные" и "идеальные" предложения классич. математики. Первые имеют содержательный смысл, а вторые не обязаны иметь содержательный смысл. Предложения, соответствующие употреблению актуальной бесконечности, идеальны. Идеальные предложения присоединяются к действительным для того, чтобы простые правила логики были применимы и к рассуждениям о бесконечных множествах. Это существенно упрощает структуру всей теории подобно тому, как при рассмотрении проективной геометрии на плоскости добавляется бесконечно удаленная , пересекающая любые две в нек-рой точке.

Выдвинутая Д. Гильбертом программа обоснования математики и его энтузиазм вдохновили современников на интенсивную разработку аксиоматического метода. Именно с предпринятой в начале 20 в. Д. Гильбертом и его последователями разработкой теории доказательств на базе развитого в работах Г. Фреге, Дж. Пеано и Б. Рассела логич. языка следует связывать становление М. л. как самостоятельной математич. дисциплины.

Предмет и основные разделы математической логики, связь с другими областями математики. Предмет современной М. л. разнообразен. Прежде всего следует отметить исследование логич. и логико-математич. исчислений, из к-рых основным является классич. предикатов. Еще в 1930 К. Гёдель (К. Godel) доказал теорему о полноте исчисления предикатов, согласно к-рой множество всех чисто логич. утверждений математики совпадает с множеством всех выводимых в исчислении предикатов формул (см. Гёделя о полноте ). Эта теорема показала, что исчисление предикатов является той логич. системой, на базе к-рой можно формализовать математику. На базе исчисления предикатов строятся различные логико-математич. теории (см. Логико-математические исчисления ), представляющие собой формализацию содержательных математич. теорий - арифметики, анализа, теории множеств, теории групп и др. Наряду с элементарными теориями рассматриваются также теории высших порядков, в к-рых допускаются также кванторы по предикатам, предикаты от предикатов и т. д. Традиционными вопросами, к-рые исследуются для тех или иных формальных логич. систем, являются исследования структуры выводов в этих системах, тех или иных формул, вопросы непротиворечивости и полноты рассматриваемых систем.

Доказанная в 1931 Гёделя теорема о неполноте арифметики поколебала оптимистич. надежды Д. Гильберта на полное решение вопросов оснований математики на указанном пути. Согласно этой теореме, если , содержащая арифметику, непротиворечива, то утверждение о ее непротиворечивости, выразимое в этой системе, не может быть доказано средствами, формализуемыми в ней. Это означает, что с вопросами оснований математики дело обстоит не так просто, как хотелось или казалось Д. Гильберту вначале. Но уже К. Гёдель заметил, что непротиворечивость арифметики можно доказывать, пользуясь достаточно надежными конструктивными средствами, хотя и выходящими за рамки средств, формализуемых в арифметике. Аналогичные доказательства непротиворечивости арифметики были получены Г. Генценом (G. Gentzen, 1936) и П. С. Новиковым (1943).

В результате анализа канторовской теории множеств и связанных с ней парадоксов были построены различные системы аксиоматической теории множеств, в к-рых принимается то или иное ограничение на образование множеств, чтобы исключить возникновение известных антиномий. В этих аксиоматич. системах могут быть развиты довольно обширные разделы математики. Вопрос о непротиворечивости достаточно богатых аксиоматич. систем теории множеств остается открытым. Из наиболее значительных результатов, полученных в аксиоматич. теории множеств, следует отметить результат К. Гёделя о непротиворечивости континуум-гипотезы и выбора аксиомы в системе Бернайса - Гёделя (1939) и результат П. Коэна (P. Cohen, 1963) о независимости этих аксиом от аксиом системы Цермело-Френкеля ZF. Отметим, что эти две системы аксиом и ZF равнонепротиворечивы. Для доказательства своих результатов К. Гёдель ввел важное понятие конструктивного множества (см. Конструктивное по Гёдeлю множество ).и показал существование модели системы состоящей из таких множеств. Метод К. Гёделя был использован П. С. Новиковым для доказательства непротиворечивости нек-рых других утверждений дескриптивной теории множеств (1951). Для построения моделей теории множеств ZF, в к-рых выполняются отрицания континуум-гипотезы или аксиомы выбора, П. Коэн ввел так наз. вынуждения метод, к-рый впоследствии был усовершенствован и стал основным методом построения моделей теории множеств, удовлетворяющих тем или иным свойствам.

Одним из наиболее замечательных достижений М. л. явилась разработка понятия общерекурсивной функции и формулировка Чёрча тезиса, утверждающего, что понятие общерекурсивной функции является уточнением интуитивного понятия алгоритма. Из других эквивалентных уточнений понятия алгоритма наибольшее распространение получили понятия Тьюринга машины и нормального алгорифма Маркова. По существу вся математика связана с теми или иными алгоритмами. Но только после уточнения понятия алгоритма появилась возможность обнаружить существование неразрешимых алгоритмических проблем в математике. Неразрешимые алгоритмич. проблемы были обнаружены во многих разделах математики ( , теория чисел, теория вероятностей и др.), причем оказалось, что они могут быть связаны с очень распространенными и фундаментальными понятиями математики. Исследование алгоритмич. проблем в той или иной области математики, как правило, сопровождается проникновением идей и методов М. л. в эту , что приводит к решению также и других проблем, уже не имеющих алгоритмич. характера.

Разработка точного понятия алгоритма дала возможность уточнить понятие эффективности и развивать на базе такого уточнения конструктивное в математике (см. Конструктивная математика ), воплотившее в себе нек-рые черты интуиционистского направления, но существенно отличающееся от последнего. Были созданы основы конструктивного анализа, конструктивной топологии, конструктивной теории вероятностей и др.

В самой теории алгоритмов можно выделить исследования в области рекурсивной арифметики, куда входят различные классификации рекурсивных и рекурсивно-перечислимых множеств, степени неразрешимости рекурсивно-перечислимых множеств, исследования сложности записи алгоритмов и сложности алгоритмич. вычислений (по времени и по зоне, см. Алгоритма слож ность ). Обширным развивающимся разделом теории алгоритмов является теория нумераций.

Как отмечалось выше, аксиоматич. метод оказал большое влияние на развитие многих разделов математики. Особенно значительным было проникновение этого метода в алгебру. Так, на стыке М. л. и алгебры возникла общая теория алгебраических систем, или моделей теория. Это направление было заложено в работах А. И. Мальцева, А. Тарского (A. Tarski) и их учеников. Здесь можно отметить исследования по элементарным теориям классов моделей, в частности вопросы разрешимости этих теорий, аксиоматизируемость классов моделей, моделей, вопросы категоричности и полноты классов моделей.

Важное место в теории моделей занимает исследование нестандартных моделей арифметики и анализа. Еще на заре развития дифференциального исчисления в работах Г. Лейбница (G. Leibniz) и И. Ньютона (I. Newton) бесконечно малые и бесконечно большие величины рассматривались как числа. Позже появилось понятие переменной величины, и математики отказались от употребления бесконечно малых чисел, к-рых отличен от нуля и меньше любого положительного действительного числа, т. к. их употребление потребовало бы отказа от аксиомы Архимеда. И только через три столетия в результате развития методов М. л. удалось установить, что (нестандартный) анализ с бесконечно малыми и бесконечно большими числами непротиворечив относительно обычного (стандартного) анализа действительных чисел.

Не обошлась без влияния аксиоматич. метода и интуиционистская математика. Так, еще в 1930 А. Рейтинг (A. Heyting) ввел в рассмотрение формальные системы интуиционистской логики высказываний и предикатов (конструктивные исчисления высказываний и предикатов). Позже были введены формальные системы интуиционистского анализа (см., напр., ). Многие исследования по интуиционистской логике и математике имеют дело с формальными системами. Подвергались специальному изучению также так наз. промежуточные логики (или суперинтуиционистские), т. е. логики, лежащие между классической и интуиционистской логиками. Понятие реализуемости формул по Клини представляет одну из попыток интерпретировать понятие интуиционистской истинности с точки зрения классич. математики. Однако оказалось, что не всякая реализуемая исчисления высказываний выводима в интуиционистском (конструктивном) исчислении высказываний.

Подверглась формализации также и модальная логика. Однако, несмотря на наличие большого числа работ по формальным системам модальной логики и по их семантике (Крипке модели ), можно сказать, что здесь происходит процесс накопления пока еще разрозненных фактов.

М. л. имеет большое прикладное значение; с каждым годом растет глубокое проникновение идей и методов М. л. в кибернетику, в вычислительную математику, в структурную лингвистику.

Лит. : Гильберт Д., Б е р н а й с П., Основания математики. Логические исчисления и формализация арифметики, пер. с нем., М., 1979; К л и н и С. К., Введение в метаматематику, пер. с англ., М., 1957; Мендельсон Э., Введение в математическую логику, пер. сангл., 2 изд., М., 1976; Новиков П. С., Элементы математической логики, 2 изд., М., 1973; Е р ш о в Ю. Л., Палютин Е. А., Математическая логика, М., 1979; Ш е н ф и л д Д. Р., Математическая логика, пер. с англ., М., 1975; Н о в и к о в П. С., Конструктивная математическая логика с точки зрения классической, М., 1977; К л и н и С. К., В е с л и Р., Основания интуиционистской математики с точки зрения теории рекурсивных функций, пер. с англ., М., 1978; Гильберт Д., Основания геометрик, пер. с нем., М., 1948; Френкель А.-А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966; Математика XIX века. Математическая логика. Алгебра. Теория чисел. Теория вероятностей, М., 1978; Mostowski A., Thirty years of foundational studies, Hels., 1965.

См. также лит. при статьях об отдельных разделах М. л.

С. И. Адян.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Синонимы :

Смотреть что такое "МАТЕМАТИЧЕСКАЯ ЛОГИКА" в других словарях:

    Одно из названий современной логики, пришедшей во втор. пол. 19 нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение… … Философская энциклопедия

Другие разделы

МАТЕМАТИЧЕСКАЯ ЛОГИКА, дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике.

Важную роль в математической логике играют понятия дедуктивной теории и исчисления. Исчислением называется совокупность правил вывода, позволяющих считать некоторые формулы выводимыми. Правила вывода подразделяются на два класса. Одни из них непосредственно квалифицируют некоторые формулы как выводимые. Такие правила вывода принято называть аксиомами . Другие же позволяют считать выводимыми формулы, синтаксически связанные некоторым заранее определённым способом с конечными наборами выводимых формул. Широко применяемым правилом второго типа является правило modus ponens: если выводимы формулы и, то выводима и формула.

Отношение исчислений к семантике выражается понятиями семантической пригодности и семантической полноты исчисления. Исчисление И называется семантически пригодным для языка Я, если любая выводимая в И формула языка Я является верной. Аналогично, исчисление И называется семантически полным в языке Я, если любая верная формула языка Я выводима в И.


Математическая логика изучает логические связи и отношения, лежащие в основе логического (дедуктивного) вывода, с использованием языка математики.


Многие из рассматриваемых в математической логике языков обладают семантически полными и семантически пригодными исчислениями. В частности, известен результат К. Гёделя о том, что так называемое классическое исчисление предикатов является семантически полным и семантически пригодным для языка классической логики предикатов первого порядка. С другой стороны, имеется немало языков, для которых построение семантически полного и семантически пригодного исчисления невозможно. В этой области классическим результатом является теорема Гёделя о неполноте, утверждающая невозможность семантически полного и семантически пригодного исчисления для языка формальной арифметики.


Стоит отметить, что на практике множество элементарных логических операций является обязательной частью набора инструкций всех современных микропроцессоров и соответственно входит в языки программирования. Это является одним из важнейших практических приложений методов математической логики, изучаемых в современных учебниках информатики.


Разделы математической логики

    Алгебра логики

    Логика высказываний

    Теория доказательств

    Теория моделей

Логика высказываний (или пропозициональная логика от англ. propositional logic, или исчисление высказываний) - это формальная теория, основным объектом которой служит понятие логического высказывания. С точки зрения выразительности, её можно охарактеризовать как классическую логику нулевого порядка.

Несмотря на свою важность и широкую сферу применения, логика высказываний является простейшей логикой и имеет очень ограниченные средства для исследования суждений

Алгебра логики (алгебра высказываний) - раздел математической логики, в котором изучаются логические операции над высказываниями . Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Базовыми элементами, которыми оперирует алгебра логики, являются высказывания. Высказывания строятся над множеством , над элементами которого определены три операции:

    Отрицание (унарная операция),

    Конъюнкция (бинарная),

    Дизъюнкция (бинарная),

а также константы - логический ноль 0 и логическая единица 1.

Теория вероятности - раздел математики, изучающий случайные события их свойства и операции над ними.

В теории вероятностей изучаются, те случайные события, которые могут быть воспроизведены в одних и тех же условиях и обладающие следующим свойством: в результате эксперимента, при условии S событие A может произойти с определенной вероятность p.


Основными понятиями теории вероятности являются: событие, вероятность, случайное событие, случайное явление, математическое ожидание, дисперсия, функция распределения, вероятностное пространство.


Как наука теория вероятностей возникает в середине 17 века. Первые работы появляются, в связи с подсчетом вероятностей в азартных играх. Исследуя прогнозирование выигрыша при бросании костей,
Блез Паскаль и Пьер Ферма , в своей переписке 1654 года, открыли первые вероятностные закономерности. В частности в этой переписки они пришли к понятию математическое ожидание и теоремам умножения и сложения вероятностей. В 1657 году эти результаты были приведены в книге Х. Гюйгенса «О расчетах в азартных играх», которая является первым трактатом по теории вероятностей.

Больших успехов в теории вероятностей достиг
Яков Бернулли : он установил закон больших чисел в простейшем случае, сформулировал многие понятия современной теории вероятностей. Им была написана монография по теории вероятностей, которая была издана посмертно в 1713 году, под названием «Искусство предположений».

В первой половине 19 века теория вероятностей начинает применяться в теории ошибок наблюдений. В это время были доказаны
теорема Муавра - Лапласа (1812) и теорема Пуассона (1837), являющиеся первыми предельными теоремами. Лаплас расширил и систематизировал математические основы теории вероятностей. Гаусс и Лежандр разработали метод наименьших квадратов.

Во второй половине 19 века большинство открытий в теории вероятности были сделаны российскими учеными
П. Л. Чебышёвым и его ученикам и А. М. Ляпуновым и А.А Марковым. В 1867 году Чебышёв сформулировал и достаточно просто доказал закон больших чисел при весьма общих условиях. В 1887 он же впервые сформулировал и предложил метод решения центральной предельной теоремы для сумм независимых случайных величин. В1901 году эта теорема была доказана Ляпуновым при более общих условиях. Марков в 1907 году впервые рассмотрел схему испытаний связанных в цеп, тем самым, положив основу теории Марковских цепей. Так же он внес большой вклад в исследования, касающиеся теории больших чисел и центральной предельной теоремы.

В начале 20 века происходит расширение круга применения теории вероятностей, создаются системы строго математического обоснования и новые методы теории вероятностей. В этот период благодаря трудам
Андрея Николаевича Колмогорова теории вероятностей приобретает современный вид.

В 1926 году, будучи аспирантом, Колмогоров получает необходимые и достаточные условия, при которых имеет место закон больших чисел. В 1933 в своей работе «Основные понятия теории вероятностей» Колмогоров вводит аксиоматику теории вероятностей, которая общепризнанна наилучшей.


Математический аппарат теории вероятности широко используется в науке и технике. В частности в астрономии для расчета орбит комет используется метод наименьших квадратов. В медицине при оценке эффективности методов лечения так же используется теория вероятности.


/ БДЭ Математика /

Дедукция

Помните, Шерлок Холмс постоянно твердил о своих дедуктивных способностях? Так что же такое дедукция?

ДЕДУКЦИЯ (лат. deductio - выведение) - такая форма мышления, когда новая мысль выводится чисто логическим путем из предшествующих мыслей. Такая последовательность мыслей называется выводом, а каждый компонент этого вывода является либо ранее доказанной мыслью, либо аксиомой, либо гипотезой. Последняя мысль данного вывода называется заключением.

Дедуктивное умозаключение, являющееся предметом традиционной логики, применяется нами всякий раз, когда требуется рассмотреть какое - либо явление на основании уже известного нам общего положения и вывести в отношении этого явления необходимое заключение. Нам известен, например, следующий конкретный факт - “данная плоскость пересекает шар” и общее правило относительно всех плоскостей, пересекающих шар, -“всякое сечение шара плоскостью есть круг”. Применяя это общее правило к конкретному факту, каждый правильно мыслящий человек необходимо придет к одному и тому же выводу: “значит данная плоскость есть круг”.


Структура дедуктивного умозаключения и принудительный характер его правил
отобразили самое распространенные отношения между предметами материального мира: отношения рода, вида и особи, т. е. общего, частного и единичного: то, что присуще всем видам данного рода, то присуще и любому виду; то, что присуще всем особям рода, то присуще и каждой особи.

Впервые теория дедукции была обстоятельно разработана Аристотелем. Он выяснил требования, которым должны отвечать отдельные мысли, входящие в состав дедуктивного умозаключения, определил значение терминов и раскрыл правила некоторых видов дедуктивных умозаключений. Положительной стороной аристотелевского учения о дедукции является то,что в нем отобразились реальные закономерности объективного мира.

Под термином “дедукция” в узком смысле слова понимают также следующее:
1) Метод исследования, заключающийся в следующем: для того, чтобы получить новое знание о предмете или группе однородных предметов, надо, во - первых найти ближайший род, в который входят эти предметы, и, во - вторых, применить к ним соответствующий закон, присущий всему данному роду предметов . Дедуктивный метод играет огромную роль в математике. Известно, что все теоремы выводятся логическим путем с помощью дедукции из небольшого конечного числа исходных начал, называемых аксиомами.
2) Форма изложения материала в книге, лекции, докладе, беседе, когда от общих положений, правил, законов идут к менее общим положениям, правилам, законам.
Этот способ позволяет задавать формальные аксиоматические теории .
2.Задание только аксиом
В этом случае правила вывода считаются общеизвестными, поэтому задаются только аксиомы. Поэтому при таком построении теорем, говорят, что полуформальная аксиоматическая теория .
3.Задание только правил вывода
Данный способ построения теорем основывается на задании только правил вывода, поскольку множество аксиом пусто. Исходя из этого, теория, заданная таким образом, являет собой частный случай формальной теории. Позднее эта разновидность стала называться теорией естественного вывода .

К основным свойства дедуктивных теорий относятся:
1. Противоречивость
Противоречивой называется теория, в которой множество теорем покрывает всё множество формул.

2. Полнота
Полной называется теория, в которой для любой формулы F выводима либо сама F , либо ее отрицание -F .
3. Независимость аксиом
Когда отдельную аксиому теории нельзя вывести из остальных аксиом, то ее называют независимой . Система аксиом называется независимой только в том случае, если каждая аксиома в ней независима.
4. Разрешимость
Когда в теории существует эффективный алгоритм, позволяющий определить количество шагов, доказывающих теорему, теория называется разрешимой .
К примеру, логика высказываний, логика первого порядка (исчисление предикатов), формальная арифметика (теория S ).