Турбина вентиляционная своими руками чертежи. Как сделать вентиляционный дефлектор своими руками — от чертежа до готового устройства

Вопросы энергонезависимости беспокоят умы не только руководителей государств, предприятий, но и отдельно взятых граждан, владельцев частных домов. С увеличением монополии и тарифов производителями электроэнергии, народ ищет эффективные альтернативные источники питания. Одним из таких источников считается ветровой генератор.

Основные элементы в системе ветрового генератора

Существует много моделей, вариантов от разных производителей, но как показывает практический опыт, не всегда они доступны по цене и качеству для широкого круга потребителей. При наличии информации, определенных знаний электротехники и практических навыках, ветрогенератор доступно сделать своими руками.

Принцип работы и основные элементы

Работа самодельного ветрогенератора ничем не отличается от промышленных моделей, принципы действия заложены те же самые. Энергия ветра преобразуется в механическую энергию вращением ротора генератора, который вырабатывает электричество.

Основные элементы конструкции (рис. выше):

  • пропеллер с лопастями;
  • вал вращения, по которому крутящий момент передается на ротор генератора;
  • генератор;
  • конструкция крепления генератора на месте установки;
  • если необходимо, для увеличения оборотов вращения ротора может устанавливаться редуктор или ременная передача между валом с пропеллером и валом генератора;
  • для преобразования переменного тока генератора в постоянный используется преобразователь, выпрямительный диодный мост, ток с которого поступает для подзарядки аккумуляторной батареи;
  • аккумуляторная батарея, от которой электроэнергия поступает через инвертор к нагрузке;
  • инвертор преобразует постоянный ток аккумулятора с напряжением 12 В или 24 В в переменный с напряжением 220 В.

Конструкции пропеллеров, генераторов, редукторов и других элементов могут отличаться, иметь различные характеристики, дополнительные приборы, но в основе системы всегда присутствуют перечисленные составляющие.

Выбор и изготовление своими руками

По конструктивному исполнению существует два типа оси, вращающей ротор генератора:

  • генераторы с горизонтальной осью вращения;

Генератор с горизонтальной осью вращения

  • генераторы с вертикальной осью вращения.

Роторный ветрогенератор с вертикальной осью вращения

Горизонтальные оси вращения

Каждая конструкция имеет свои достоинства и недостатки. Наиболее распространенный вариант – с горизонтальной осью. Эти модели имеют большой КПД преобразования энергии ветра во вращательные движения оси, но есть определенные трудности в расчетах и изготовлении своими руками лопастей. Обычная плоская форма лопасти, которая применялась на старинных ветряных мельницах, малоэффективна.

Для использования максимальной энергии ветра при вращении оси, лопасти должны иметь крыловидную форму. На самолетах форма крыла за счет силы встречного ветра обеспечивает подъемные потоки. В рассматриваемом случае силы этих потоков будут направлены на вращение вала генератора. Пропеллеры могут быть с двумя, тремя, и большим количеством лопастей, чаще всего встречаются конструкции с тремя лопастями. Этого вполне достаточно, чтобы обеспечить необходимую скорость вращения.

Ветрогенераторы с горизонтальной осью вращения должны постоянно быть повернуты плоскостью пропеллера на фронт встречного потока ветра. Для этого требуется применять хвостовое оперение флюгерного типа, которое под действием ветра, как парус, разворачивает всю конструкцию пропеллером к встречному ветру.

Вертикальные оси вращения

Основным недостатком этого варианта является низкий КПД, однако это компенсируется более простой конструкцией, которая не требует изготовления дополнительных элементов для поворота лопастей к ветру. Вертикальное расположение оси и лопастей позволяет использовать энергию ветра для вращения с любого направления, эту конструкцию проще сделать своими руками. Вращение вала осуществляется более стабильно, без резких скачков скорости.

Среднегодовые скорости ветров на территории России неодинаковы. Наиболее благоприятные условия для работы ветрогенераторов – 6-10 м/с. Таких районов немного, в основном преобладают ветра 4-6 м/с. Для увеличения скорости вращения приходится применять редукторы и учитывать высоту, розу ветров на местности установки генератора.

Пример изготовления ветрогенератора

Рассматривается вариант с вертикальной осью вращения.

Ветровая турбина своими руками

Самый простой вариант для производства лопастей – использовать металлическую бочку на 50-200 л. В зависимости от количества необходимых лопастей, бочка распиливается болгаркой сверху вниз на 4 или 3 равные части.

Вертикальные лопасти из металлической бочки

Можно просто использовать листы оцинкованного кровельного железа, которые легко вырезать нужной формы своими руками, используя ножницы по металлу.

Вертикальные лопасти из листового железа

В дальнейшем лопасти крепятся на верхней части оси вращения. Основой для их крепления могут быть деревянные диски из шестислойной фанеры.

Надежнее использовать металлическую раму из прямоугольного профиля, к которой болтами прикручиваются лопасти.

Пример размещения вертикальных лопастей

Пример крепления лопастей к платформе

Рама или диски жестко крепятся на ось вращения, сама ось вставляется в муфты с подшипниками, которые надежно установлены в каркасе вышки или крыши здания, на котором размещается генератор.

Установка оси с лопастями на вышке

Наглядное изображение установки вертикальной оси вращения на крыше здания

  1. Турбина с вертикальными лопастями.
  2. Платформа стабилизации оси с двухрядным шариковым подшипником.
  3. Растяжки стального троса Ø 5мм.
  4. Вертикальная ось, стальная труба Ø 40-50мм, толщина стенок не менее 2 мм.
  5. Рычаг регулятора скорости вращения.
  6. Лопасти аэродинамического регулятора сделаны из фанеры или пластика толщиной 3-4 мм.
  7. Тяги, которыми регулируется скорость вращения, количество оборотов.
  8. Груз, вес которого устанавливает скорость вращения.
  9. Шкив вертикальной оси для ременной передачи, широко используется велосипедный обод от колеса, без камеры и покрышки.
  • Опорный подшипник.
  • Шкив на оси ротора генератора.

На нижний конец оси крепится шкив для ременной передачи или шестерни для редуктора, это необходимо для увеличения скорости вращения ротора. Практика показывает, что при скорости ветра 5 м/с вращение вала с горизонтальными лопастями от бочки будет не более 100 об/м. При скорости ветра 8-10 м/с вращение достигает до 200 м/с. Этого очень мало для того, чтобы генератор выдавал необходимую мощность для зарядки аккумулятора.

Редуктор соотношением 1:10 позволяет добиться необходимой скорости вращения.

Установка шкивов ременной передачи

Низкооборотный генератор

Для преобразования механической вращательной энергии в электричество проще всего использовать автомобильные генераторы. Но обычные генераторы от легковых автомобилей для ветряков не рекомендуются по причине наличия щеток в их конструкции. Графитовые щетки снимают ток, наводящийся на роторе, в процессе эксплуатации они стираются и требуют замены. Кроме того, такие генераторы высокооборотистые, для выработки напряжения 14 В с током до 50А требуется 2000 и более оборотов.

Более эффективные генераторы для ветряков от тракторов и автобусов Г.964.3701 с магнитным возбуждением обмоток. Они не имеют щеток, работают на более низких оборотах. Генератор Г288А.3701 имеет три фазы, используется для электроснабжения транспортных средств в совокупности с аккумулятором. Имеет хорошие характеристики для использования в системах ветрогенераторов:

  • вырабатывает напряжение 28 В;
  • встроенный выпрямитель выдает постоянный ток до 47 А;
  • мощность на выходе до 1.3 кВт;
  • на холостом ходу вращение 1200 об/м;
  • при токовой нагрузке в 30А требуется 2100 об/м.

Генератор имеет подходящие габариты и массу:

  • общий вес 10 кг;
  • диаметр 174 мм;
  • длина 230 мм.

Генератор с МАЗа – 24В

Генераторы такого типа используются на транспорте КАМАЗ, Урал, КРАЗ, МАЗ с двигателями ярославского завода ЯМЗ 236, 238, 841, 842 и ЗМЗ 73. В целях экономии финансов, можно купить бывший в употреблении генератор на пунктах разборки. Для выработки большей мощности электроэнергии при низких оборотах можно сделать генератор своими руками на ниодимовых магнитах, но это отдельная тема и требует более подробного описания.

Последовательность сборки

  1. В первую очередь монтируется вышка или конструкция крепления генератора на крыше здания. Крепится вертикальная ось во втулки с подшипниками, устанавливаются лопасти.
  1. После установки оси с лопастями на нижней части фиксируется шкив для ременной передачи.
  2. На уровне шкива оси, к специально подготовленной платформе, крепится генератор с шкивом для ремня на вале ротора. Шкивы генератора и оси с лопастями должны устанавливаться на одном уровне.

Диаметр шкива на оси должен быть примерно в 10 раз больше диаметра шкива на вале генератора. Исходя из условий, что расчетная скорость ветра примерно 10 м/с, даст скорость вращения оси до 200 об/м.

Используется формула:

Wr = Wos x Dosd, где

  • Wr – скорость вращения шкива генератора;
  • Dos – диаметр шкива на вертикальной оси;
  • d – диаметр шкива на вале ротора генератора;
  • Wos – скорость вращения шкива вертикальной оси.

Wr = 200 обм х 500мм/50 мм = 2000 об/м – достаточная скорость вращения, чтобы генератор выбранного типа выдал необходимую мощность.

  1. Натягивается ремень, для этого в платформе крепления генератора должны быть прорези, как на креплении автомобиля.
  2. Выходные провода генератора подключаются к клеммам аккумулятора.

Данные генераторы имеют встроенные выпрямители, на выходе постоянный ток, поэтому плюсовой красный провод крепится к клемме «+», а минусовой провод – к клемме «минус».

  1. Вход инвертора 24В/220В подключается к аккумулятору, также с соблюдением полярностей.
  2. Выход инвертора подключается к цепи с нагрузкой.

Видео. Ветрогенератор своими руками.

Имея необходимые материалы, практические навыки слесарных работ, используя готовые автомобильные генераторы с магнитным возбуждением обмоток, ветрогенератор несложно установить своими руками. Для изготовления генератора большей мощности на ниодимовых магнитах потребуются более глубокие знания в электротехнике и навыки сборки электрооборудования. Это один из самых простых способов собрать ветровой генератор своими руками.

Невероятно! Но скоро это произойдет. Альтернативные источники энергии третьего поколения перевернут мир в целом. Начало уже заложено. Ветряные турбины - вот электроэнергетическое будущее человечества.

Введение

Несмотря на то что альтернативным видам энергетики, таким как ветряные турбины, например, все еще незаслуженно мало уделяется внимания, они продолжают усиленно развиваться. Возможно, в скором времени сильные мира сего поймут, что невменяемая добыча полезных ископаемых больше приносит вреда, чем пользы, и природные виды энергетики прочно войдут в нашу повседневную жизнь. Такая надежда тесно связана с тем, что некоторое время назад было объявлено о появлении ветрогенератора третьего поколения.

Что такое ветряной генератор третьего поколения

Традиционно принято считать, что устройствами первого поколения, которые преобразовывали энергию ветра, были обычные корабельные паруса и мельничные крылья. Чуть более века назад, с развитием авиации, появился ветрогенератор второго поколения - механизм, в основе работы которого лежали принципы аэродинамики крыла.

Это был прорыв того времени! Хотя, если взять в целом, то ветряки второго поколения маломощны, так как из-за конструктивных особенностей не могут работать при сильных ветрах. Поэтому для того чтобы получать больше электроэнергии приходилось увеличивать в размерах, что тянуло за собой дополнительные финансовые расходы на разработку, производство, установку и его эксплуатацию. Естественно, что долго так оставаться не могло.

В начале 2000-х готов специалисты-разработчики объявили о появлении ветрогенератора третьего поколения - ветротурбины. Конструкция, принцип работы, установка, а самое главное мощность нового устройства коренным образом отличается от его предшественников.

Устройство

Простота. Это именно то слово, которым можно охарактеризовать конструкцию ветротурбинного генератора. По сравнению с лопастными ветрогенераторами, ветряная турбина имеет гораздо меньшее количество рабочих узлов и гораздо больше неподвижных элементов, благодаря чему более стойко переносит различные статические и динамические нагрузки.

Устройство ветротурбины:

  • обтекатель, бывает внутренний и наружный;
  • обтекатель узла турбогенератора;
  • гондола;
  • турбина;
  • генератор;
  • динамичный крепежный узел.

Из дополнительных систем ветрогенератор оснащен блоками инвертирования, аккумуляции и управления. Отсутствуют традиционные для лопастного ветрогенератора системы регулировки лопастей и ориентации на ветер. Последнюю заменяет обтекатель, который также выступает в роли сопла, улавливает ветер и увеличивает его мощность. Если учитывать, что энергия ветряного потока равняется его скорости в кубе V3, то благодаря наличию сопла эта формула выглядит следующим образом: V3х4 = Eх64. При этом благодаря своей цилиндрической конструкции обтекатель имеет свойство самонастраиваться на направление ветра.

Преимущества

Любой новый продукт или изобретение всегда должны существенным образом выделяться на фоне своих предшественников, и обязательно в лучшую сторону. Все это можно сказать и про новый ветрогенератор с турбоконструкцией. Одно из главных преимуществ ветротурбины - это ее устойчивость к сильным ветрам. Ее конструкция устроена таким образом, что она будет эффективно и безопасно работать за пределами, которые для обычных лопастных ветряков, являются критическими: от 25 м/сек до 60 м/сек. Но это не единственное преимущество, которыми обладает ветряная турбина, их несколько:

  1. Отсутствие инфразвуковых волн. Наконец-то ученым удалось решить одну из важных проблем, которыми обладают ветрогенераторные установки. Именно из-за существования такого побочного эффекта ВСУ (ветросиловая установка) подвергалось критике со стороны противников альтернативной энергетики, инфразвук отрицательно сказывается на окружающей живой среде. Но теперь ветрогенератор турбинного типа благодаря отсутствию инфразвуковых волн, могут устанавливать даже в городской черте.
  2. Отсутствие лопастей снимает сразу несколько задач, которые стояли перед конструкторами и изготовителями ветрогенератора. Первое, снимаются значительные затраты сил и средств на эксплуатационный контроль лопастных ветряков. Второе, лопасть ветряного колеса - это самый сложный элемент ветрогенератора в изготовлении. Львиную долю стоимости обычной ВЭУ составляют затраты именно на изготовление лопастей. К тому же известны случаи, когда при сильных порывах ветра, лопасть ломалась, разбрасывая осколки на сотни метров.
  3. Простота сборки и установки. Все сложные конструкции или узлы изготавливает и собирает завод-производитель, на месте происходит лишь последний этап сборки и установка на мачту. Плюс легкость конструкционных элементов, позволяет использовать при монтаже ветрогенераторасамую обычную грузоподъемную технику.
  4. Схема подключения. В отличие от лопастной ВСУ турбина подключается по стандартной схеме. На этот факт никак не влияют те технические условия, который выдвигает будущий владелец ВЭУ.
  5. Большой срок эксплуатации обусловлен материалами, из которых изготавливается ветрогенератор и его отдельные части. Учитывая профилактические работы, которые обязательны при эксплуатации ветротурбины, срок службы устройства может составлять до 50 лет.
  6. География эксплуатации турбинной ВСУ

    Самым реальным и оптимальным местом установки турбинного ветрогенератора будет берег озера или моря. Рядом с водоемами такой ветрогенератор будет работать практически круглый год, потому что благодаря своему сопельному устройству, он является очень чувствительным к легким бризам и другим малейшим проявлениям ветра скоростью от 2 м/сек.

    С таким же успехом ВСТ будут работать и в черте города, там, где обычный ветрогенератор работать, неспособен по ряду известных причин:

    1. Небезопасность лопастных ВЭУ.
    2. Инфразвук, который они издают.
    3. Минимальная скорость ветра для работы лопастного ветрогенератора 4 м/сек.

    Интересный факт, который доказывает преимущество ВТУ

    Одним из краеугольных камней, на которых базируется позиция противников альтернативной энергетики, заключается в том, что ветряные электростанции препятствуют работе локационного оборудования. Во время работы ветрогенератор создает помехи, для прохождения радиоволн. Учитывая размеры отдельных ветроэлектростанций, а они могут составлять от нескольких десятков до сотен квадратных километров, понятно, почему правительства многих стран начали блокировать проекты альтернативной энергетики на государственном уровне - это прямая угроза национальной безопасности.


    По этой причине французская компания, производящая комплектующие на ветрогенератор, взялась за непростую задачу с точки зрения исполнения - сделать невидимыми для радаров непосредственно ветросиловые установки, а не пространство вокруг ветрогенератора. Для этого будет использоваться опыт, полученный при изготовлении самолетов Стелс. Новые комплектующие планируют выпустить на рынок уже в 2015 году.

    Но где, же факт, который доказывает преимущество ВСТ перед лопастной ВЭУ? А факт заключается в том, что ветротурбины не создают помех, для работы локационного оборудования и без дорогостоящей технологии Стелс.

    Перспективы развития альтернативной ветроэнергетики

    Первые попытки начать использовать ветрогенератор в промышленных масштабах предпринимались еще в середине прошлого века, но оказались неудачными. Это было обусловлено тем, что нефтяные ресурсы были сравнительно дешевыми, а строительство ветроэнергетических станций было нерентабельно затратным. Но буквально через 25 лет ситуация в корне изменилась.

    Альтернативные источники энергии усилено начали развиваться в 70-х годах прошлого века, после того, как в мире резко выросли темпы машиностроения и страны столкнулись с дефицитом нефти, что привело к нефтяному кризису 1973 года. Тогда впервые сектор нетрадиционной энергетики в некоторых странах получил государственную поддержку и ветрогенератор стал использоваться в промышленных масштабах. В 80-х годах мировая ветроэнергетика начала выходить на самоокупаемость, и сегодня такие страны, как Дания, Германия и Австралия почти на 30% обеспечивают себя за счет альтернативных источников энергии, в числе которых и ветроэлектростанции.


    К сожалению, а возможно, и к счастью, прошлогодняя тенденция нефтяного рынка с нестабильной ценой на нефть, заставляют всерьез задуматься о том, что времена, когда дешевая нефть - это было хорошо остались в прошлом. Сегодня для многих стран, чем дешевле нефть, тем выгоднее развивать нетрадиционную энергетику в первую очередь это касается стран СНГ. Поэтому предпосылки для того, что ветроэнергетика будет развиваться - есть. Как это будет - посмотрим.

В каналах и воздуховодах. Но со временем в шахту может попасть мусор, каналы могут просто забиваться пылью, которая накрепко прилипает к их стенкам, в особенности если на них есть жировой налет. Все это уменьшает диаметр воздуховодов, что негативно сказывается на работе всей системы вентиляции.

Именно поэтому многие домовладельцы устанавливают на оголовках вентиляционных труб специальные устройства под названием дефлекторы.

Особенности работы устройства

устанавливают для увеличения тяги в воздуховодах, шахтах и каналах. Это устройство, отклоняя воздушные потоки создаваемые ветром, создает на выходе системы вентиляции зону пониженного давления. Воздушные массы, находящиеся в трубе, стараясь компенсировать разряжение, поднимаются к оголовку трубы, тем самым увеличивая тягу.

Это описание принципа действия всех дефлекторов, конструкций которых существует огромное количество. Многие устройства не только отклоняют воздушные потоки, но и увеличивают скорость их прохождения над оголовком вентиляционной трубы, за счет сужения канала, тем самым значительно усиливая тягу (принцип аэрографа).

Грамотное использование дефлектора способствует увеличению производительности всей вентиляционной системы до 20%, особенно полезен он на вентиляционных каналах с большими горизонтальными участками и изгибами.

Кроме того, дефлектор на вентиляционной трубе прекрасно защищает от попадания внутрь различного мусора, мелких птиц, насекомых, а главное, атмосферных осадков. В основном, материал, из которого изготавливают эти аппараты, стойкий к коррозийным проявлениям. Это оцинкованная или нержавеющая сталь, керамика или пластик.

Существующие типы дефлекторов

На сегодняшний день существует огромное количество различных конструкций таких приборов. Среди них, наиболее востребованными моделями являются:

  • – эффективное и простое конструктивно устройство перенаправления ветра.
  • – также очень популярная конструкция дефлектора.
  • Н-образный прибор для эффективного увеличения тяги в вентиляционных и дымовых трубах.

Кроме того, часто используются различные конструкции открытых дефлекторов как на оголовках вентиляционных, так и дымовых труб.

Все многообразия моделей можно классифицировать по некоторым отличительным качествам:

  • По форме навершия устройства.
  • Вращающийся (роторный или турбинный).
  • Дефлекторы-флюгеры.

Кроме такого распространенного материала как металл, эти устройства изготавливают из пластика. Дефлектор вентиляционный пластиковый менее долговечный, чем его стальной аналог, но имеет более низкую стоимость и более утонченный внешний вид.

Именно поэтому пластиковые приспособления украшают вентиляционные шахты большинства частных домов. Но у него, кроме срока службы, есть еще один серьезный недостаток. Пластик не выносит высоких температур, поэтому его использовать на дымоходах не рекомендуется.

Флюгеры – дефлекторы, обычно, устанавливают на дымовые трубы, но и для вентиляционных систем они вполне пригодны. Воздушный поток, проходя через систему козырьков и щелей в корпусе изделия, перенаправляется благодаря чему над трубой создается зона пониженного давления. Следует напомнить, что флюгер имеет такую конструкцию, которая позволяет постоянно быть повернутым этому аппарату, рабочей стороной к ветру.

Вращающийся благодаря своей конструкции не только усиливает тягу в вентиляционной шахте, но и эффективно защищает его от различного мусора и насекомых. Этот прибор, как правило, имеет шарообразную форму, поэтому выделяется среди всех оригинальным дизайном.

Существует еще один оригинальный тип вентиляционного дефлектора – ротационный, или как его еще называют турбинный. Это устройство преобразует энергию воздушных потоков во вращательное движение турбины, которая закручивает воздух, по принципу торнадо, тем самым создается увеличение тяги в воздуховоде. Этот аппарат показывает прекрасные результаты даже в теплое время года, создавая тягу в системе вентиляции.

Изготовление простейшего прибора своими руками

Несмотря на сложность конструкции сделать дефлектор своими руками сможет каждый домашний мастер. Достаточно только иметь необходимые инструменты и материалы. Для самостоятельного изготовления этого устройства понадобится:

  • Лист плотной бумаги или картона.
  • Лист оцинкованного металла.
  • Чертеж дефлектора с расчетами относительно диаметра трубы.
  • Заклепочный пистолет.
  • Ножницы по металлу.
  • Дрель с набором сверел.
  • Маркер или чертилка.

После подготовки инструмента, материала и средств индивидуальной защиты(очки, перчатки), можно приступать к изготовлению вентиляционного дефлектора своими руками.

  1. Прежде всего, следует перевести контуры изделия с чертежа на металл. Должны быть развертки всех основных частей устройства: колпак, диффузор, внешний цилиндр, стойки.
  2. После этого, нужно вырезать все части устройства, по полученной выкройке.
  3. Соединить все части устройства, согласно чертежу или эскиза, при помощи заклепочного пистолета.
  4. Соединить две части дефлектора с помощью стоек, вырезанных из того же металла.

После изготовления можно устанавливать дефлектор на оголовок трубы, тщательно закрепив его с помощью хомутов.

Совет:
Дефлектор создаст дополнительную тягу в каналах только в том случае, если все его детали будут выполнены по определенным размерам. Следует помнить, что установку следует проводить, работая на высоте, поэтому лучше это делать вдвоем и со страховкой. Если вы не уверенны в своих силах обратитесь к профессионалам, которые имеют опыт в изготовлении и установке этих нужных приборов.


В последнее время поклонники возобновляемых источников энергии отдают предпочтение вертикальным конструкциям ветряков. Горизонтальные уходят в историю. Дело не только в том, что смастерить вертикальный ветрогенератор своими руками легче, чем горизонтальный. Основным мотивом такого выбора является эффективность и надежность.

Преимущества вертикального ветряка

1. Вертикальная конструкция ветряка лучше ловит ветер: нет необходимости определять, откуда он дует и ориентировать лопасти под воздушный поток. 2. Установка такого оборудования не требует высокого его расположения, а это значит, что вертикальный ветряк своими руками будет легче обслужить. 3. Конструкция содержит меньше движущихся деталей, что повышает ее надежность. 4. Оптимальный профиль лопастей повышает КПД ветряка. 5. Многополюсный генератор, использующийся для выработки электроэнергии, является менее шумным.

Расскажем о том, как изготовить детали и собрать вертикальный ветрогенератор своими руками.

Алгоритм действий при изготовлении турбины своими руками

1. Опоры (верхняя и нижняя) лопастей представляют собой две концентрические окружности одинаковых по размеру. Изготавливают их из ABS пластика – вырезают лобзиком. В одной из них (она будет верхней) проделывают отверстие диаметром 300 мм.

2. Нижняя опора должна опираться на хаб, в качестве которой можно использовать ступицу легкового автомобиля. Для соединения деталей нужно разметить и высверлить 4 отверстия. 3. Собирая вертикальный ветрогенератор своими руками, особое внимание уделяют креплению лопастей. Для правильного расположения лопастей нужен шаблон. На нижней опоре чертим шестиконечную звезду (звезду Давида), углы которой будут находиться на краю окружности. Проецируем чертеж на верхнюю опору. Лопасти изготавливаем из тонкого листового металла в виде полоски длиной 1160 мм, ширина которых – чуть больше стороны луча звезды.

4. Крепят лопасти двумя уголками вверху и внизу, при этом они должны быть изогнуты так, чтобы образовалась четверть круга. Располагают их друг за другом по окружности, устанавливая на грани лучей.

Изготавливаем ротор

1. Основания для ротора диаметром 400 мм выпиливают из фанеры толщиной 10 мм. По внешнему радиусу с помощью жидких гвоздей или эпоксидного клея крепят постоянные неодимовые магниты с высокой индуктивностью. Располагают их аналогично цифрам на часовом циферблате (ровно 12 шт) с соблюдением полярности (их рекомендуется промаркировать). Чтобы магниты не сошли со своего места, их временно фиксируют распорками из деревянных клиньев.

2. Второй ротор делают аналогично и симметрично первому. Разница в полярности магнитов – она должна быть противоположной.

Как собрать статор

Статор собирается из 9-ти катушек индуктивности. Должно быть з группы последовательно соединенных катушек (по 3 шт. в группе): конец предыдущей соединяется с началом следующей (конфигурация «звезда»). Располагаются катушки симметрично в вершинах трех треугольников, вписанных в окружность. Намотка выполняется медным проводом 0,51 мм в диаметре (тип – 24 AWG). Необходимо 320 витков. Это позволит получить на выходе генератора напряжение 100 В при 120 об/мин. турбины. Вертикальный ветрогенератор своими руками можно смастерить с различными параметрами выходного напряжения и тока путем уменьшения/увеличения количества витков и диаметра намоточного провода статора. Витки катушек наматываются одинаково. Необходимо соблюдать направление намотки и отмечать ее начало и конец. Поверх наружного витка наносится эпоксидный клей и наматывается в четырех местах изолента – для препятствования разматыванию.

Правила и нюансы соединения катушек

Концы катушек необходимо очистить от лаковой изоляции. Соединения выполняются пайкой. Подготовленные таким образом катушки укладывают на бумажный лист, на который наносят схему их расположения (в соответствии с положением постоянных магнитов ротора). Фиксируют их скотчем. Все свободные поля бумаги (кроме центров катушек) заклеивают стеклотканью, заливая эпоксидную смолу с отвердителем. Выводы обмоток должны располагаться снаружи или внутри статора. Для крепления кронштейна в статоре проделывают отверстия.

Окончательная сборка и установка

На одну ось собираются (сверху – вниз): нижняя опора лопастей, диск с постоянными магнитами (верхнее основание ротора), статор, нижнее основание ротора и ступица. Все составляющие крепятся шпильками к кронштейну. Для хорошего контакта используем болты из нержавеющей стали. Доработав остальные мелочи, получаем готовое устройство. Вертикальный ветряк своими руками следует устанавливать на отрытой местности, там, где сила ветра наибольшая. Желательно, чтобы вблизи не было высоких сооружений. Тогда ветрогенератор будет эффективно вырабатывать электроэнергию, что поможет сэкономить средства.

Дефлекторы крепят на выходы труб естественной вентиляции над крышами небольших предприятий, общественных зданий, жилых домов. Используя напор ветра, дефлекторы побуждают тягу в вертикальных вентканалах. Вторая важная функция дефлекторов это защита от попадания в вентиляционные шахты дождя и снега. Разработаны десятки моделей вентиляционных дефлекторов, устройство некоторых описывается ниже. Простейшие варианты дефлекторов можно сделать своими руками.

Устройство вентиляционного дефлектора

Любой вид дефлекторов вентиляции содержит стандартные элементы: 2-х стаканы, кронштейны для крышки и патрубок. Наружный стакан расширяется книзу, а нижний ровный. Цилиндры надеты друг на друга, над верхним прикреплена крышка. Вверху каждого цилиндра расположены отбои в виде колец, которые изменяют направление воздуха в вентиляционном дефлекторе любого размера.

Отбои устанавливаются таким образом, чтобы ветер на улице создавал подсос через пространства между кольцами и ускорял вывод газов из вентиляции.

Устройство дефлектора вентиляции таково, что при направлении ветра снизу, механизм срабатывает хуже: отражаясь от крышки, он направляется навстречу газам, которые выходят в верхнее отверстие. Этот недостаток в большей или меньшей степени есть у любого вида вентиляционных дефлекторов. Чтобы его устранить, крышку делают в форме 2-х конусов, скрепленных основаниями.

Когда ветер сбоку, отработанный воздух отводится одновременно и сверху, и снизу. Когда ветер направлен сверху, отток происходит снизу.

Другое устройство дефлектора вентиляции – те же стаканы, но крыша в форме зонтика. Именно крыша играет здесь важную роль в перенаправлении ветрового потока.

Принцип действия дефлектора вентиляции

Принцип действия дефлектора вытяжной вентиляции очень прост: ветер ударяется в его корпус, рассекается диффузором, в цилиндре понижается давление, а значит, усиливается тяга в вытяжной трубе. Чем большее сопротивление воздуху создает корпус дефлектора, тем лучше в вентканалах тяга. Считается, что более качественно работают дефлекторы на трубах вентиляции, установленных слегка под наклоном. Эффективность работы дефлектора зависит от высоты над уровнем крыши, размера, формы корпуса.

Дефлектор вентиляционный в зимний период на трубах обмерзают. У некоторых моделей с закрытым корпусом снаружи наледь не видна. А вот при открытой зоне протока наледь появляется с наружной части нижнего стакана и заметна сразу.

Правильно подобранный дефлектор может повысить коэффициент полезного действия вентиляции до 20%.

Чаще всего дефлекторы используются в вытяжной вентиляции естественной тяги, но иногда усиливают принудительную. Если здание располагается в районах с редкими и слабыми ветрами, главная задача устройства предотвратить снижение или «опрокидывание» тяги.

Виды дефлекторов

Подбирая вентиляционный дефлектор, можно растеряться от разнообразия.

Наиболее распространенные сегодня виды дефлекторов вентиляции:

  • ЦАГИ;
  • Григоровича;
  • в форме звезды «Шенард»;
  • ASTATO открытый;
  • шарообразный «Волпер»;
  • Н-образный.

Пластиковые вентиляционные дефлекторы используются редко, так как они недолговечны и хрупки. Разрешается установка пластиковых дефлекторов на вентиляцию подвалов, цокольных этажей. Широко используются пластиковые дефлекторы только как автомобильные аксессуары.

Некоторые потребители ошибочно называют распределяющие устройства для вентиляции натяжных потолков дефлекторами. Вентиляционные дефлекторы устанавливаются только на концы вытяжных каналов. Вентиляция вытяжных потолков обеспечивается диффузорами и анемостатами, через которые воздух равномерно и в нужных количествах проникает в помещение.

Дефлектор ASTATO

Модель вращающегося вентиляционного дефлектора, которая использует и механическую, и ветровую тягу. При достаточной силе ветра двигатель выключается и ASTATO работает по принципу дефлектора вытяжной вентиляции. В штиль запускается электродвигатель, никак не влияющий на аэродинамику в системе вентиляции, но обеспечивающий достаточное разрежение (не более 35 Па).

Электродвигатель очень экономичен, включается он по сигналу датчика, измеряющего давление на выходе вентканала. В принципе большую часть года дефлектор вентиляции работает на ветровой тяге. В устройство дефлектора вентиляции ASTATO входят датчик давления и реле времени, которые автоматически запускают и выключают двигатель. При желании это можно делать вручную.

Статический дефлектор с эжектирующим вентилятором

Частично вращающийся дефлектор вентиляции – это новинка, которая очень успешно работает уже несколько лет. На выходы вентканалов устанавливаются дефлекторы ДС, чуть ниже располагаются низконапорные вентиляторы с пониженной шумоотдачей. Вентиляторы запускаются датчиком давления. Стакан выполнен из оцинкованной стали с термоизоляцией. К нему подведены воздуховоды с шумоизоляцией, дренаж. Вся конструкция прикрывается снизу навесным потолком.

Дефлектор-флюгер

Устройство относится к категории активных вентиляционных дефлекторов. Его вращает сила движущихся потоков воздуха. Вращаются корпус с крышками за счет подшипникового модуля. Во время движения между козырьками, ветер формирует зону пониженного давления. Преимущество этого вида вентиляционного дефлектора в возможности «подстроиться» под любое направление ветра и хорошей защите дымохода от ветра. Недостаток вращающегося дефлектора вентиляции в необходимости смазывать подшипники и следить за их состоянием. В сильные морозы флюгер обмерзает и плохо выполняет свою функцию.

Ротационная турбина

В тихую погоду турбодефлектор для вентиляции в виде турбины совершенно бесполезен. Потому ротационные турбины не так широко распространены, несмотря на привлекательный вид. Устанавливают их лишь в местностях со стабильным ветром. Еще одно ограничение – такой турбодефлектор нельзя использовать для дымоходов печей на твердом горючем, так как он может деформироваться.

Вентиляционный дефлектор своими руками

Чаще всего своими руками для вентиляции изготавливают дефлектор Григоровича. Устройство достаточно просто, а работа этого вида дефлектора вентиляции бесперебойна.

Чтобы изготовить своими руками дефлектора вентиляции Григоровича понадобятся:

  • оцинкованная или листовая нержавейка;
  • заклепки, гайки, болты, хомут;
  • электродрель;
  • ножницы по металлу;
  • чертилка;
  • линейка;
  • карандаш;
  • циркуль;
  • несколько листов картона;
  • ножницы по бумаге.

Шаг 1. Расчет параметров дефлектора

На этом этапе нужно вычислить размеры вентиляционного дефлектора и начертить схему. Все первичные расчеты основываются на диаметре вентиляционного канала.

Н=1,7 х D ,

где Н – высота дефлектора, D – диаметр дымохода.

Z=1,8 x D ,

где Z – ширина колпака,

d=1,3 x D ,

d – ширина диффузора.

На картоне создаем схему элементов дефлектора вентиляции, своими руками и вырезаем.

Если у вас нет опыта изготовления дефлекторов, рекомендуем потренироваться на картонном макете.

Шаг 2. Изготовление дефлектора

Обводим чертилкой на листе металла лекала и с помощью ножниц получаем части будущего устройства. Детали соединяем между собой маленькими болтами, заклепками или сваркой. Для установки колпака вырезаем кронштейны в форме изогнутых полос. Закрепляем их снаружи диффузора, обратный конус крепим на зонт. Все комплектующие готовы, теперь прямо на дымоходе собирается весь диффузор.

Шаг 3. Монтаж дефлектора

На трубу дымохода устанавливаем нижний стакан и крепим болтами. Поверх надеваем диффузор (верхний стакан), зажимаем хомутом, прилаживаем к кронштейнам колпак. Заканчивается работа по созданию дефлектора вентиляции своими руками установкой обратного конуса, который поможет устройству функционировать даже при нежелательном направлении ветра.

Выбор дефлектора вентиляции

Любой хозяин хочет подобрать для вентиляции дефлектор как можно более эффективный.

Лучшими моделями дефлекторов вытяжной вентиляции считаются:

  • тарельчатый ЦАГИ;
  • модель ДС;
  • ASTATO.

Работа дефлектора при расчетах определяется двумя параметрами:

  • коэффициент разряжения;
  • коэффициент местных потерь.

Коэффициенты зависят только от модели, а не от размеров вентиляционного дефлектора.

Например, для ДС коэффициент местных потерь составляет 1,4.