Зависимость графика от коэффициентов k и b. Как решать линейные функции

Инструкция

Существует несколько способов решения линейных функций. Приведем наиболее из них. Чаще всего используется пошаговый метод подстановки. В одном из уравнений необходимо выразить одну переменную через другую, и подставить в другое уравнение. И так до тех пор, пока в одном из уравнений не останется лишь одна переменная. Чтобы решить его необходимо с одной стороны знака равенства оставить переменную (она может быть с коэффициентом), а на другую сторону знака равенства все числовые данные, не забыв при переносе поменять знак числа на противоположный. Вычислив одну переменную, подставьте ее в другие выражения, продолжите вычисления по такому же алгоритму.

Для примера возьмем систему линейной функции , состоящую из двух уравнений:
2х+у-7=0;
х-у-2=0.
Из второго уравнения удобно выразить х:
х=у+2.
Как видите, при переносе из одной части равенства в другую, у и переменных поменялся знак, как и было описано выше.
Подставляем полученное выражение в первое уравнение, таким образом исключая из него переменную х:
2*(у+2)+у-7=0.
Раскрываем скобки:
2у+4+у-7=0.
Компонуем переменные и числа, складываем их:
3у-3=0.
Переносим в правую часть уравнения, меняем знак:
3у=3.
Делим на общий коэффициент, получаем:
у=1.
Подставляем полученное значение в первое выражение:
х=у+2.
Получаем х=3.

Еще один способ решения подобных - это почленное двух уравнений для получения нового с одной переменной. Уравнение можно умножить на определенный коэффициент, главное при этом умножить каждый член уравнения и не забыть , а затем сложить или вычесть одно уравнение из . Этот метод очень экономит при нахождении линейной функции .

Возьмем уже знакомую нам систему уравнений с двумя переменными:
2х+у-7=0;
х-у-2=0.
Легко заметить что коэффициент при переменной у идентичен в первом и втором уравнении и отличается лишь знаком. Значит, при почленном сложении двух этих уравнений мы получим новое, но уже с одной переменной.
2х+х+у-у-7-2=0;
3х-9=0.
Переносим числовые данные на правую сторону уравнения, меняя при этом знак:
3х=9.
Находим общий множитель, равный коэффициенту, стоящему при х и дели обе части уравнения на него:
х=3.
Полученный можно подставить в любое из уравнений системы, чтобы вычислить у:
х-у-2=0;
3-у-2=0;
-у+1=0;
-у=-1;
у=1.

Также вы можете вычислять данные, построив точный график. Для этого необходимо найти нули функции . Если одна из переменных равняется нулю, то такая функция называется однородной. Решив такие уравнения, вы получите две точки, необходимые и достаточные для построения прямой - одна из них будет располагаться на оси х, другая на оси у.

Берем любое уравнение системы и подставляем туда значение х=0:
2*0+у-7=0;
Получаем у=7. Таким образом первая точка, назовем ее А, будет иметь координаты А(0;7).
Для того чтобы вычислить точку, лежащую на оси х, удобно подставить значение у=0 во второе уравнение системы:
х-0-2=0;
х=2.
Вторая точка (В) будет иметь координаты В (2;0).
На координатной сетке отмечаем полученные точки и поводим через них прямую. Если вы построите ее довольно точно, другие значения х и у можно будет вычислять прямо по ней.

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

Не будем требовать от школьников невозможного и просто предложим один из алгоритмов решения подобных задач.

Итак, функция вида y = ax 2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax 2 . То есть а не должно равняться нулю, остальные коэффициенты (b и с ) нулю равняться могут.

Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

Самая простая зависимость для коэффициента а . Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, - то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x 2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

y = - 0,5x2 - 3x + 1

В данном случае а = - 0,5

Влияние коэффициента с тоже достаточно легко проследить. Представим, что мы хотим найти значение функции в точке х = 0. Подставим ноль в формулу:

y = a 0 2 + b 0 + c = c . Получается, что у = с . То есть с - это ордината точки пересечения параболы с осью у. Как правило, эту точку легко найти на графике. И определить выше нуля она лежит или ниже. То есть с > 0 или с < 0.

с > 0:

y = x 2 + 4x + 3

с < 0

y = x 2 + 4x - 3

Соответственно, если с = 0, то парабола обязательно будет проходить через начало координат:

y = x 2 + 4x


Сложнее с параметром b . Точка, по которой мы будем его находить, зависит не только от b но и от а . Это вершина параболы. Ее абсцисса (координата по оси х ) находится по формуле х в = - b/(2а) . Таким образом, b = - 2ах в . То есть, действуем следующим образом: на графике находим вершину параболы, определяем знак ее абсциссы, то есть смотрим правее нуля (х в > 0) или левее (х в < 0) она лежит.

Однако это не все. Надо еще обратить внимание на знак коэффициента а . То есть посмотреть, куда направлены ветви параболы. И только после этого по формуле b = - 2ах в определить знак b .

Рассмотрим пример:

Ветви направлены вверх, значит а > 0, парабола пересекает ось у ниже нуля, значит с < 0, вершина параболы лежит правее нуля. Следовательно, х в > 0. Значит b = - 2ах в = -++ = -. b < 0. Окончательно имеем: а > 0, b < 0, с < 0.

«Критические точки функции» - Критические точки. Среди критических точек есть точки экстремума. Необходимое условие экстремума. Ответ: 2. Определение. Но, если f" (х0) = 0, то необязательно, что точка х0 будет точкой экстремума. Точки экстремума (повторение). Критические точки функции Точки экстремумов.

«Координатная плоскость 6 класс» - Математика 6 класс. 1. Х. 1.Найдите и запишите координаты точек A,B, C,D: -6. Координатная плоскость. О. -3. 7. У.

«Функции и их графики» - Непрерывность. Наибольшее и наименьшее значение функции. Понятие обратной функции. Линейная. Логарифмическая. Монотонность. Если k > 0, то образованный угол острый, если k < 0, то угол тупой. В самой точке x = a функция может существовать, а может и не существовать. Х1, х2, х3 – нули функции у = f(x).

«Функции 9 класс» - Допустимые арифметические действия над функциями. [+] – сложение, [-] – вычитание, [*] – умножение, [:] – деление. В таких случаях говорят о графическом задании функции. Образование класса элементарных функций. Степенная функция у=х0,5. Иовлева Максима Николаевича, учащегося 9 класса РМОУ Радужская ООШ.

«Урок Уравнение касательной» - 1. Уточнить понятие касательной к графику функции. Лейбниц рассматривал задачу о проведении касательной к произвольной кривой. АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у=f(x). Тема урока: Тест: найти производную функции. Уравнение касательной. Флюксия. 10 класс. Расшифруйте, как исаак ньютон назвал производную функцию.

«Построить график функции» - Дана функция y=3cosx. График функции y=m*sin x. Постройте график функции. Содержание: Дана функция: y=sin (x+?/2). Растяжение графика y=cosx по оси y. Чтобы продолжить нажмите на л. Кнопку мыши. Дана функция y=cosx+1. Смещения графика y=sinx по вертикали. Дана функция y=3sinx. Смещение графика y=cosx по горизонтали.

Всего в теме 25 презентаций

Рассмотрим задачу. Мотоциклист, выехавший из города А, в настоящий момент находится в 20 км от него. На каком расстоянии s (км) от А будет находиться мотоциклист через t часов, если он будет двигаться со скоростью 40 км/ч?

Очевидно, что за t часов мотоциклист проедет 50t км. Следовательно, через t часов он будет находиться от А на расстоянии (20 + 50t) км, т.е. s = 50t + 20, где t ≥ 0.

Каждому значению t соответствует единственное значение s.

Формулой s = 50t + 20, где t ≥ 0, задается функция.

Рассмотрим еще одну задачу. За отправление телеграммы взимается плата 3 копейки за каждое слово и дополнительно 10 копеек. Сколько копеек (u) следует уплатить за отправление телеграммы, содержащей n слов?

Так как за n слов отправитель должен уплатить 3n копеек, то стоимость отправления телеграммы в n слов может быть найдена по формуле u = 3n + 10, где n – любое натуральное число.

В обеих рассмотренных задачах мы столкнулись с функциями, которые заданы формулами вида у = kx + l, где k и l – это некоторые числа, а х и у – это переменные.

Функция, которую можно задать формулой вида у = kx + l, где k и l – некоторые числа, называется линейной.

Так как выражение kx + l имеет смысл при любых х, то областью определения линейной функции может служить множество всех чисел или любое его подмножество.

Частным случаем линейной функции является рассмотренная ранее прямая пропорциональность. Вспомним, при l = 0 и k ≠ 0 формула у = kx + l принимает вид у = kx, а этой формулой, как известно, при k ≠ 0 задается прямая пропорциональность.

Пусть нам нужно построить график линейной функции f, заданной формулой
у = 0,5х + 2.

Получим несколько соответственных значений переменной у для некоторых значений х:

х -6 -4 -2 0 2 4 6 8
y -1 0 1 2 3 4 5 6

Отметим точки с полученными нами координатами: (-6; -1), (-4; 0); (-2; 1), (0; 2), (2; 3), (4; 4); (6; 5), (8; 6).

Очевидно, что построенные точки лежат на некоторой прямой. Из этого еще не следует, что графиком данной функции является прямая линия.

Чтобы выяснить, какой вид имеет график рассматриваемой функции f, сравним его со знакомым нам графиком прямой пропорциональности х – у, где х = 0,5.

Для любого х значение выражение 0,5х + 2 больше соответствующего значения выражения 0,5х на 2 единицы. Поэтому ордината каждой точки графика функции f больше соответствующей ординаты графика прямой пропорциональности на 2 единицы.

Следовательно, график рассматриваемой функции f может быть получен из графика прямой пропорциональности путем параллельного переноса на 2 единицы в направлении оси ординат.

Так как график прямой пропорциональности – это прямая линия, то и график рассматриваемой линейной функции f также прямая линия.

Вообще, график функции, заданной формулой вида у = kx + l, есть прямая линия.

Мы знаем, что для построения прямой линии достаточно определить положение двух ее точек.

Пусть, например, нужно построить график функции, которая задана формулой
у = 1,5х – 3.

Возьмем два произвольных значения х, например, х 1 = 0 и х 2 = 4. Вычислим соответствующие значения функции у 1 = -3, у 2 = 3, построим в координатной плоскости точки А (-3; 0) и В (4; 3) и проведем через эти точки прямую. Эта прямая и есть искомый график.

Если область определения линейной функции представлена не всеми числами, то ее графиком будет подмножество точек прямой (например, луч, отрезок, множество отдельных точек).

От значений l и k зависит расположение графика функции, заданной формулой у = kx + l. В частности, от коэффициента k зависит величина угла наклона графика линейной функции к оси х. Если k – положительное число, то этот угол острый; если k – отрицательное число, то угол – тупой. Число k называют угловым коэффициентом прямой.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определение линейной функции

Введем определение линейной функции

Определение

Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

Рассмотрим рисунок 1.

Рис. 1. Геометрический смысл углового коэффициента прямой

Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

\ \

Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

\[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

С другой стороны $\frac{BC}{AC}=tg\angle A$.

Таким образом, можно сделать следующий вывод:

Вывод

Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

Исследование линейной функции $f\left(x\right)=kx+b$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 2).

Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
  4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

  1. $f"\left(x\right)={\left(kx\right)}"=k
  2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  4. График (рис. 3).