Инжекционная горелка низкого давления чертеж. Инжекторные газовые горелки

Схема и принцип работы инжекторной горелки. Горелка состоит из двух основных частей - ствола и наконечника (рис. 45). Ствол имеет кислородный 1 и ацетиленовый 16 ниппели с трубками 3 и 15, рукоятку 2, корпус 4 с кислородным 5 и ацетиленовым 14 вентилями. С правой стороны горелки (если смотреть по направлению течения газов) находится кислородный вентиль 5, а с левой - ацетиленовый вентиль 14. Вентили служат для пуска, регулирования расхода и прекращения подачи газа при гашении пламени. Наконечник, состоящий из инжектора 13, смесительной камеры 12 и мундштука 7, присоединяется к корпусу ствола горелки накидной гайкой.

Рис. 45. Устройство инжекторной горелки:

1, 16 - кислородный и ацетиленовый ниппели, 2 - рукоятка, 3, 15 - кислородная и ацетиленовая трубки, 4 - корпус, 5, 14 - кислородный и ацетиленовый вентили, 6 - ниппель наконечника, 7 - мундштук. 8 - мундштук для пропан-бутан-кислородной смеси, 9 - штуцер, 10 - подогреватель, 11 - трубка горючей смеси, 12 - смесительная камера, 13 - инжектор; а, б - диаметры выходного канала инжектора смесительной камеры, в - размер зазора между инжектором и смесительной камерой, г - боковые отверстия в штуцере 9 для нагрева смеси, д - диаметр отверстия мундштука

Инжектор 13 представляет собой цилиндрическую деталь с центральным каналом малого диаметра - для кислорода и периферийными, радиально расположенными каналами - для ацетилена.

Рис. 46. Инжекторное устройство:

1 - смесительная камера, 2 - инжектор, 3 - корпус горелки

Инжектор ввертывается в смесительную камеру наконечника и находится в собранной горелке между смесительной камерой и газоподводящими каналами корпуса горелки. Его назначение состоит в том, чтобы кислородной струей создавать разреженное состояние и засасывать ацетилен, поступающий под давлением не ниже 1 кПа. Разрежение за инжектором достигается высокой скоростью (порядка 300 м/с) кислородной струи. Давление кислорода, поступающего через вентиль 5, составляет от 0,05 до 0,4 МПа.

Инжекторное устройство

Инжекторное устройство показано на рис. 46. В смесительной камере кислород перемешивается с ацетиленом, и смесь поступает в канал мундштука. Горючая смесь, выходящая из мундштука со скоростью 100-140 м/с, при зажигании горит, образуя ацетилено-кислородное пламя с температурой до 3150°С.

В комплект горелки входит несколько номеров наконечников. Для каждого номера наконечника установлены размеры каналов инжектора и размеры мундштука. В соответствии с этим изменяется расход кислорода и ацетилена при сварке.

Стандартным инструментом газосварщика является сварочная горелка, она обеспечивает специальное газосварочное пламя, нагревает и расплавляет металл. Вместе с тем такая горелка должна соответствовать некоторым техническим требованиям, например, обеспечивать бесперебойное устойчивое газосварочное пламя нужной формы, иметь специальную систему регулировки, постоянно устанавливать режим этого пламени, работать без необходимости ремонта длительное время, быть прочной, удобной и безопасной, и соответствовать всем стандартам массы таких горелок. Такие требования зачастую выполняют лишь грамотно сконструированные горелки, которые изготовлены лишь из качественных и надежных материалов.

Для изготовления сварочных горелок используется чаще всего латунь, а для того, чтобы уменьшить массу горелки используют алюминиевые сплавы. Сварочные горелки изготавливают еще и для определенных горючих газов, которые сжигаются в печи вместе с воздухом и кислородом. Для сварочной техники преимущественно используют ацетилено-кислородные горелки, они имеют различную мощность и способны сваривать сталь шириной до 30 мм. Существуют разные виды подобных горелок, некоторые из них вырабатывают большую мощность, которая обеспечивает сварку тонких сталей.

Виды

По конструкции сварочные горелки разделяют на два вида:

  • инжекторные с низким давлением;
  • безинжекторные с высоким давлением.

Понять к какому виду относится необходимая горелка, можно с помощью наличия инжектора для подсоса горючей смеси. Применять инжектор приходится из-за давления горючего газа, при высоком давлении горючего газа, он способен самостоятельно поступать в горелку, поэтому инжектор не обязателен. Именно поэтому безинжекторные горелки называют горелками высокого давления. В случае, когда давление не слишком велико, используется инжектор для принудительной подачи горючего газа в горелку. Они и носят название горелки низкого давления. Когда давление достигает лишь 0,5 ати, единственным средством станет горелка низкого давления.

Безинжекторные горелки

Учитывая то, что в горелках высокого давления присутствует инжектор, конструкция такого прибора намного проще, чем у горелки с низким давлением. На рисунке показана схема поступления горючей смеси в безинжекторную горелку. Она работает по следующему принципу:

  1. Кислород проходит в неё через специальный шланг из резины в вентиль 1, а затем в смеситель 3.
  2. В смесителе поток кислорода расходится на маленькие струи и проходит дальше в сопло смешения под номером 4. Таким же образом кислород поступает и через регулировочный вентиль 2.
  3. Благодаря смесителю 3 смесь попадает в камеру смешения 5. Увеличение сечения газового потока способствует уменьшению его скорости, поэтому смесь кислорода и газа заканчивает свою циркуляцию и обеспечивает на выходе однородную горючую смесь.
  4. Полученная смесь попадает на трубку наконечника 6, а далее через калиброванный канал мундштука 7, который выполнен из красной меди, выходит и тут же сгорает, что и образует горючее сварочное пламя.

Чтобы обеспечить правильное необходимое пламя, этот поток должен выходить из мундштука с точной скоростью, которая равна скорости горения смеси. Если эта скорость меньше нормы, то может произойти переход пламени из мундштука вверх горелки, что грозит взрывом горючей смеси внутри самой горелки. Если же скорость больше необходимой, пламя оторвется от мундштука, удалится от его среза и вскоре затухнет. Определить нужную скорость помогут несколько данных: состав горючей смеси, диаметр выходного канала и конструкция мундштука. Получить постоянную скорость истечения горючей смеси можно, лишь подсчитав все эти величины.

Нормальной скоростью истечения в ацетилено-кислородных горелках считается скорость 70-160 м/с. Для того, чтобы создать нормальную скорость газа на выходе, потребуется давление 0,5-0,7 атмосфер. Давление для ацетилена и кислорода почти одинаково.

Горелки высокого давления предназначены как для ацетилена, так и для метана или водорода. Данные горелки просты в использовании и конструкции, хорошо держат постоянную бесперебойную скорость истечения горючей смеси. Даже при таких плюсах безинжекторные горелки используют редко за счет того, что для них требуется ацетилен достаточного давления, которые редко встречаются на производстве.

Инжекторные горелки

На рисунке слева показано устройство инжекторной горелки. Здесь кислород попадает в вентиль 1, затем в конус инжектора 3 и камеру смешения 5. Выходит из инжектора 4 и стремительно засасывает горючий газ, далее полученная смесь кислорода и газа попадает в трубку наконечника 6 и вырывается через мундштук 7. За счет кислорода, давление становится ниже достаточного атмосферного. При этом оно должно быть беспрерывным и составлять порядка 3,5 атмосфер.

Основным минусом инжекторной горелки является непостоянный состав горючей смеси. Притом, что она способна работать на низких давлениях, её все же используют гораздо чаще, чем горелку высокого давления, ведь на производстве выгоднее работать на низком давлении и этот фактор остается решающим. А вот ацетилен высокого или достаточного давления производится еще не в таких масштабных количествах. К тому же, инжекторная горелка способна работать еще и на высоком давлении, и чем оно больше, тем эффективность её работы больше. Когда давление ацетилена довольно низкое, становятся легко заметны любые незначительные изменения состава горючей смеси из-за влияния нагрева горелки и увеличения сопротивления горючей смеси.


работа с газовой горелкой (есть русские субтитры)

Для того, чтобы работа инжекторной горелки была как можно дешевле, газосварщики постоянно используют универсальные горелки со сменными наконечниками. Такая инжекторная горелка состоит из главной и сменной части, то есть наконечника, который соединяется с помощью накидной гайки с основной постоянной частью ствола горелки. Этот ствол состоит из рукоятки, системы регулировочных вентилей, соединительных ниппелей и труб, а наконечник включает в себя смесительную камеру, трубку наконечника и мундштук.

Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок. В зависимости от количества воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.

Горелки с неполной инжекцией воздуха. В таких горелках к фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа и называются инжекционными горелками низкого давления .

Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.

Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции : отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м 3 газа необходимо 10 м 3 воздуха, а первичный воздух составляет 4 м 3 , то коэффициент инжекции равен 4: 10 = 0,4.

Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м 3 сжигаемого газа инжектируется 4 м 3 воздуха, кратность инжекции равна 4.

Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

Достоинство инжекционных горелок - это их свойство саморегулирования, то есть поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Горелки с полным предварительным смешением газа с воздухом. Инжекция воздуха, необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт.

Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей используют огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.

Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и с огнеупорными насадками.

Инжещионная горелка конструкции Казанцева состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора (рисунок ниже).

Инжекционная горелка Казанцева

1 - стабилизатор; 2 - насадок; 3 - конфузор; 4 - форсунка; 5 - регулятор первичного воздуха

Регулятор первичного воздуха горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь. В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной.

В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.

Газовоздушная смесь у этих горелок приготавливается с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не выходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется. Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси.

На рисунке ниже показана беспламенная панельная горелка. Поступающий в сопло из газопровода газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха. Образовавшаяся газовоздушная смесь через инжектор поступает в распределительную камеру, проходит по ниппелям и поступает в керамические тоннели. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера теплоизолирована от керамических призм слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.

Беспламенная панельная горелка

1 - тоннель; 2 - ниппель; 3 - распределительная камера; 4 - инжектор; 5 - сопло; 6 - регулятор воздуха; 7 - газопровод; 8 - керамические призмы

Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.

Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.

Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плиток размером 65x45x12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.

Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения (рисунок ниже).

Горелки инфракрасного излучения

а - схема горелки: 1 - рефлектор; 2 - керамическая плитка; 3 - смеситель; 4 - сопло; 5 - корпус; 6 - сборная камера; б, в, г - соответственно горелки ГИИ-1, ГИИ-8 и ГК-1-38

Через сопло газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру и далее направляется в огневые отверстия керамической плитки. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени.

В дальнейшем скорость вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000 °С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.

Керамические плитки имеют около 600 огневых цилиндрических каналов, что составляет около 40 % поверхности плиток.

Плитки соединяют друг с другом специальной замазкой, состоящей из смеси шамотного порошка с цементом.

Если инфракрасные горелки работают на газе среднего давления, то применяют специальные плиты из жаропрочных пористых материалов. Вместо цилиндрических каналов у них узкие искривленные каналы, которые заканчиваются расширяющимися камерами сгорания.

При сжигании газа в многочисленных каналах различных насадок происходит нагрев внешних поверхностей каналов до температуры примерно 1000 "С. В результате поверхности приобретают оранжево-красный цвет и становятся источниками инфракрасных лучей, которые поглощаются различными предметами и вызывают их нагрев.

На рисунке б-г показаны наиболее распространенные типы инфракрасных горелок. У горелок ГИИ-1 имеются 21 керамическая плитка, рефлектор и распределительная коробка. С помощью горелок ГИИ можно обогревать помещения и различное оборудование. Горелки используют и для обогрева открытых площадок (спортивные площадки, кафе, помещения летнего типа и т. д.).

Горелку ГК-1-38 успешно применяют для подогрева строящихся стен и штукатурки, обогрева людей, работающих в зимних условиях. Горелка может работать на природном и сжиженном газах.

Osm 19-06-2007 07:45

Здравствуйте, уважаемые.
Я собрал инжекционную горелку чтобы сделать маленький газовый горн, но не могу добиться от неё нормальной температуры.
Не могу подобрать оптимальные параметры так как не понимаю принципа работы.
Например - как влияет диаметр сопла, как влияет диаметр отверстия жиклёра, как влияет давление?
Раньше у меня всё работало от редуктора-лягушки, явно не хватало давления и пламя было жёлтым, сейчас использую специальный пропановый редуктор с регулируемым давлением, пламя удалось получить синего цвета. Пробовал работать с дутьём от пылесоса, но оно задувает огонь.
Объясните пожалуйста принцип работы.

Mutant 19-06-2007 13:18

Хм, не так все просто...
Сопло инжектора дает струю газа или паров, которая подсасывает воздух (лучше -кислород ), и одновременно смешивается с ним. И от скорости истечения (грубо - от давления), диаметра сопла и размера камеры зависит качество получившейся смеси. Дальше эта смесь уже поступает собственно к горелке.
Количество воздуха в смеси регулируется либо давлением (при принудительной подаче), либо перекрыванием спец. окошек в камере.
Горючее - игольчатым вентилем.

Самый простой пример - паяльная лампа. Подсос воздуха никак не регулируется, мощность - давлением горючего.
Обычно, чем больше давление, тем громче шумит, - лучше перемешивание - лучше греет.

Давление - чем больше, тем лучше (в разумных пределах), проще регулировать. И от имеющегося давления зависит диаметр сопла инжектора - чем ниже давление, тем больше диаметр. Да, диаметр зависит и от мощности нагрева, которую надо получить (0,1 - 0,15 у ювелирных горелок, 0,3 - 0,5 на паялках). Подбирал экспериментально.
Желтый вялый факел - много горючего, отрывает факел - мало, голубой прозрачный - само то.
Да, чтоб не отрывало факел - ставят рассекатель, тормозящий поток, добавляют дополнительно поджигающий факел.

Osm 19-06-2007 13:29

Спасибо за ответ, не совсем понял как это диаметр сопла - 0.1-0.5, это каких единиц, или вы имели ввиду диаметр форсунки?
И ещё про диаметр формунки - если я уменьшаю диаметр форсунки, при неизменном выходном давлении на редукторе, то увеличивается скорость истечения газа, это положительно влияет на подсос воздуха или нет?

Mutant 19-06-2007 14:48

quote: диаметр сопла - 0.1-0.5, это каких единиц,
quote: уменьшаю диаметр форсунки, при неизменном выходном давлении на редукторе, то увеличивается скорость истечения газа,

Скорость истечения-то с чего увеличится, если давление то же?
Если надо увеличивать содержание воздуха, то увеличивать окна, поиграть размером камеры.
Если не помогает - уменьшать диаметр инжектора.
Или повышать давление.
Кстати, подогрев (за счет теплопередачи от факела) может менять режимы (уменьшается подсос воздуха), лучше иметь запас.

Osm 25-06-2007 08:33

Вчера наконец добился от горелки нормального результата, оказалось, что у меня было слишком маленькое давление. Интересный эффект заметил - при увеличении давелния нужно прикрывать воздушную заслонку, иначе горит нестабильно.
Сейчас хочу спросить.
Скажите у кого какой диаметр жиклёра и какое давление, хочу понять нормально или нет, что у меня при диаметре в 1 мм давление - 2 кгс/см2?

50мк76 25-06-2007 10:59

Моей первой ошибкой было расположить воздушный дроссель слишком близко к форсунке. Горелка голодная до воздуха и наддув обязателен.Близко расположенная заслонка не дававла образованию нормальной газовой смеси.Горелка запускалась в спочти закрытой заслонкой а при полностью открытой сбивала пламя. Приходилось постоянно регулировать. Сейчас разнес расстояние между форсункой и заслонкой. Стало на много лучше но теперь надо увеличить мощность вентилятора.Фото старое. Показанно как было.

Osm 25-06-2007 12:05

250мк76
Да у меня тоже заслонка примерно на таком расстояни. Скажите какое у Вас сейчас давление? диаметр форсунки я так понимаю 0.75мм.
Можете показать фото как сейчас?
Ещё - как Вы определяете, что воздуха недостаточно?

50мк76 25-06-2007 13:36

Окончательного фото нет. Это я все мои эксперементы фиксировал.Печка только сегодняшняя. Сопло 200 мм. диаметр 32 мм. Остальное все труба 40 мм. Боченки длинной 110 мм. Пламя должно ровное с синеватым оттенком.Всегда играюсь редуктором и заслонкой для достижения необхобимой температуры. На больших заготовках заслонка открыта полностью, на редукторе 1.5-2 атм. Когда печь прогревается снижаю до 1-1.2 атм. газ экономлю. Вход в печь закрываю кирпичем но небольшой зазор оставляю. Попробуй запусти печь, дай ей погреться минут 10 с прикрытым входом.Кирпичи должны быть красными в нутри. Потом эксперементируй с давлением, форсункой, заслонкой и т.д. Ум меня все соединения как видишь резьбовые и проще модулировать.

Osm 25-06-2007 16:17

Скажите, какое максимальное давление в домашней газовой сети?

кузя 25-06-2007 21:23

Сетевое давление примерно 300-400 мм.
Точно не скажу, ибо не занимаюсь бытовухой
Для природного газа форсунка должна быть немного другая

Соотношение газ-воздух, для каждой системы подбирается свое.
Если пламя соломенного цвета и идет черный дымок (не дымит, а именно дымок, его можно увидеть если поставить лист бумаги), значит не хватает кислорода.
Если отрывает факел, соответственно много воздуха.
Пламя, в идеальных условиях должно быть ярко голубым (для природного газа), или с желтыми языками (для балонов с пропан-бутановой смесью, как на рисунке).

Наладку по газу-воздуху делают только на прогретом агрегате, для таких размеров 10-15 минут должно хватить.
Лучше если подсосы воздуха по периметру будут целиком убраны. Подсосы создают в топке местные перепады и могут просто разорвать обмуровку. Промазать топку шамотом, что поможет избежать проблеммы, настойки каждый раз.

Вопрос всем.
Я немного не понимаю зачем давление в 1-2 кг?
Смысл всего этого?
На рабочем газовом котле оно до 400 мм, и греет не три саниметра площади.
Пылесос громко и неэстетично обычного короба с вентилятором за 100-200 рэ за глаза, для такой живопырки.
Может лучше попытаться поток закрутить увеличив длину факела или горелку кольцевую или подовую сделать. Для такой системы ИМХО лучше.

Но раз уж хотите инжекционную, попробуйте разбить поток воздуха, до горелки, или закрутить его. Приостановив и прибавив кислорода в облать горения.

Osm 26-06-2007 06:48

А что такое кольцевая или подовая горелка, поискал в яндексе, но всё какие-то промышленные устройства, можете набросать принципиальную схему? может действительно проще такую сделать как Вы говорите.
По Вашему рисунку не понял, где форсунка? как выгибаются лопасти? каким образом закручивается поток воздуха? в каком месте происходит сгорание газа и смешение его с воздухом? Поясните пожалуйста, тема очень интересная.

кузя 26-06-2007 21:55

Не буду Вас морочить.
Про подовые и кольцевые горелки можно взять любую книгу по теплотехнике и прочитать.
Не обижайтесь, просто это 4-й курс института и два семестра лекций

Вы написали, что горелка уже есть, нарисуйте, хотя-бы схематично, как выглядит. Уже готовое изделие проще оптимизировать по горению, чем делать новое.

Скорее всего Вам не сформировать факел, т.е. нет амбразуры.
Нарисуйте, постараюсь помочь советом.

Направляющих на горелки не нашел, ни рисунков, ни фото. Блин видимо такой жуткий секрет
Нашел нечто похожее, только с отверстиями, а на направляющих горелок щель

Oleg79 26-06-2007 22:38

quote: Originally posted by кузя:

Нашел нечто похожее, только с отверстиями


Что то мне эта картинка сильно напоминает деталь от электрической соковыжималки

кузя 26-06-2007 22:51

Она и есть
Ну вид такой же.

Mutant 27-06-2007 08:26

Что-то я не совсем понял, какая горелка нужна - стационар или ручная.

Сейчас, наверное проще купить готовую, чем изобретать самому... Есть в продаже и ювелирные микро и макро, которыми рубероид греют. Но если интересно разобраться - тоже дело хорошее...

Вот, старая публикация в "М-К": Ю.Орлов. Универсальная горелка (Моделист-конструктор) Размер файла: 55.55 Kb http://mail.mega.dp.ua/mche/modules.php?name=Downloads&d_op=getit&lid=1368

Если интересно, могу сфотить свои горелки.

Osm 27-06-2007 08:39

2Mutant
Вообще изначально мне нужно было сделать горелку для небольшого газового горна, в принципе это уже сделано, но настроить её толком не могу. Горелка работает от газового баллона. Всё что сделал - скопировал уже из существуюищх статей, не особо понимая принципов работы. Сейчас вот хочу разобраться как работает моя и возможно узнать что-то новое - например, как сделать горелку работающую на низком давлении домашней газовой сети.
Фото имеющихся у Вас горелок очень интересно было бы посмотреть.

Osm 27-06-2007 13:47

2кузя
Просмотрел книги:
Теплотехника, под редакцией Баскакова.
Теплотехника, Чечёткин, Занемонец
Теплотехника, под редакцией Крутова.
Упоминание термина кольцевая и подовая горелка не встретил, хотя про инжекционные горелки кое-что нашёл.
Не могли бы Вы порекомендовать соответствующую литературу (лучше, ту что можно найти в инете).

кузя 28-06-2007 23:21

Извеняюсь, что не сразу ответил.
Отобрал у теплотехников книгу "Сжигание газов в топках котлов и печей и обслуживание газового хозяйства предприятий" В.М. Чепель, И.А. Шур.
В интернете наверное можно поискать, но она специально для персонала ответственного за газовое хозяйство.
В общем по газовым горелкам отсканировал, но получилось 51 лист и 5 Mb.
Если устроит вот ссылка http://ig-79-9t.narod.ru/gorelki.rar
Если на дайлапе, то подскажите как перегнать в.pdf чтобы ужать.

Уточнил, в сети городской давление 120 мм, маловато для нормальной мощности.
Когда будете смотреть инжекционные горелки обратите внимание:
- на Вашей горелке нет элемента формирующего факел, да и форма обратная "оригиналу",
- втыкая так газовую линию, Вы принуждаете поток воздуха её огибать, и когда воздуха ещё мало, разрежение за трубкой у форсунки отрывает факел.

В общем почитайте, посмотрите, если что не ясно спрашивайте

Osm 29-06-2007 06:37

ок, спасибо, читаю

Гриня 29-06-2007 10:04

может вот это полезно будет,
раньше лежало и там и там.
Довольно прикольная книга с научным уклоном, хотя в общем ничего особо сложного. На аглицком правда
http://rapidshare.de/files/17385588/Industrial_Burners_Handbook_-_C.E.Baukal__2003_.rar
http://mmcd.meditprofi.ru/machining/Industrial_Burners_Handbook_-_C.E.Baukal__2003_.rar

Vlad Klem 02-07-2007 15:28

То Osm
В ответах к Вам участники все перепутляли. Кислое с твердым, горячее со сладким. В советах и ювелирные горелки, и горелки для подогрева асфальта, которые работают только на открытом воздухе, так как дожиг факела идет за счет атмосферного воздуха. Попробуйте суньте сопло этой горелки в закрытое пространство и она моментально погаснет. Я же Вам запостил чертежи ижекционных горелок взятые с сайтов американских кузнецов и металлургов. (Там же есть все размеры, правда в дюймах, но я думаю это не проблема перевести это в мм). Горелки расчитываются на тепловую мощность и в зависимости от давления газа выбирается диаметр отверстия жиклера, (примерно от 0,5 до 1,0мм) диаметр и длина смесительной трубки (примерно 1/2" до 1")и диаметр воздушного (воздушных) отверстий для эжектируемого воздуха. Скажу, что баллонная пропан-бутановая смесь подаваемая под давлением 3ат. при коэффициэнте избытка воздуха 1,1 дает температуру факела до 2100*С.
Далее, - инжекционная горелка на сетевом газе работать не будет. Нужен принудительный поддув воздуха и камера смешения. Примерно вот такая схема:

Osm 02-07-2007 15:33

2mutant
о, спасибо, познавательно.

Osm 02-07-2007 15:42

2Vlad Klem
Спасибо за комментарий, я уже читаю книжки и похоже у меня получается понять суть и отделить горячее от сладкого Я действительно столкнулся с тем, что горелка хорошо работает на открытом воздухе и гаснет в печке, понимаю почему.
По поводу сетевого газа - такую схему уже видел, но есть сомнения, что сетевого газа хватит, чтобы дать необходимое количество теплоты в единицу времени, созимеримое с тем что даёт инжекционная горелка и давлением в 2-3 атм. Существенно увеличить теплоизоляцию у меня думаю не получится, т.е. печка будет греться дольше чем остывать. Каково Ваше мнение?

кузя 02-07-2007 17:53

2 Vlad Klem:
Не знаю как там у Вас с кузнецами в Пендосии
А у нас инжекционные горелки делятся на два вида:
1. с инжекцией газа воздухом
2. с инжекцией воздуха газом

Для горелок, второго типа, работающих на давлении 350-500 мм (средне давление) вентилятор не нужен, что является основным достоинством конструкции. Мало того, на среднем давлении довольно короткий факел.

Vlad Klem 02-07-2007 20:32

То Osm
Сетевой газ в основном состоит их метана. Его теплотворная способность ниже, чем у пропан-бутановой смеси. Я не знаю, какое давление в бытовой разводке, но знаю, что при коэффициэнте избытка воздуха 1,2-1,25 температура факела будет не ниже 1800*С. Так что вполне хватит для печки, даже для плавки стали, только конструкция горелки будет другая и другое (большее) отверстие жиклера. Надо просто посчитать какое оно будет при давлении бытовой сети. Для любой печи самое главное термоизоляция.

То кузя
Я не знаю, как там с кузнецами в пиндосии,
но у нас в Москве на Нагорной делается так, как я написал. И что интересно, работает неплохо.
А ежели Вы соизволите поднять мои старые посты, то прочтете, где я как-то уже отмечал, что горелками, сделанными мною, уже не первый год пользуются некоторые наши ножеделы например Г.К. Прокопенков и Василий Козлов и естественно Алексей Кукин. А также Сергей Данилов (Самурай) и Игорь Пампуха. Да и некоторые другие, которые, с моего разрешения, сделали их сами.

кузя 03-07-2007 04:02

quote: Originally posted by Vlad Klem:

С моего разрешения, сделали их сами.

Ёкараный бабай!!!
А я то думал, кто у нас в РОССИИИ горелки разрабатывает.

Смеюсь, по тому-что мой дед преподавал, а отец 30 лет ставил и налаживал горелки и я не первый год вместе с папой работаю. БИГ Промэнэргогазовский - труды не только наши, но и огромного коллектива, который по всей стране работает.

А если Вы пытаетесь оспорить своё мнение надо доводы а не данные "с потолка", да пиндосские доводы сюда кидать.
Это так для размышления.

Alhim 31-08-2007 01:43

Недавно изготовил печку, в качестве топлива - отработка (ибо, как бедный студент, не могу позволить себе расходовать такие количества пропана) . Греет вполне себе, шумит только сильно (впечатление такое будто взлететь собирается) .Ежели хотите могу скинуть фотки. Вопрос в определении температуры заготовки - на фоне разогретых кирпичей (пламя практически прозрачное) не могу определить цвет заготовки. Пробовал закалить два клинка из Х12МФ - оба оплавились,не сгорели (ибо были под флюсом) , а именно оплавились (когда флюс снял видно было риски от наждака переходящие в оплавленную поверхность по четкой кривой линии) и это при светло желтом (на взгляд) цвете каления. Опытные люди, если не сложно,сделайте табличку с цветами (картинка-квадратик необходимого цвета - соответствующая на ваш взгляд температура).

Osm 03-09-2007 17:56

2Alhim
Конечно, очень интересно было бы увидеть картинки.

Osm 04-09-2007 18:05



Существует ли какая то формула расчёта расхода газа при выходе из жиклёра определённого диаметра, если он подаётся к соплу под определённым давлением? Или на это влияет ещё и геометрия сопла, диаметры подводящих шлангов и т.п.? Интересует расход именно газа, а не количество получаемой горючей смеси.

Osm 04-09-2007 18:06

Дополнение - считаю что газ выбрасывается в атмосферу, т.е. снаружи давление атмосферное.

Alhim 04-09-2007 18:34

quote: Originally posted by Osm:
Прочитал умных книжек. Многое понял.
Появился вопрос на который не нашёл ответа:
Существует ли какая то формула расчёта расхода газа при выходе из жиклёра определённого диаметра....... Или на это влияет ещё и геометрия сопла, диаметры подводящих шлангов и т.п.? Интересует расход именно газа, а не количество получаемой горючей смеси.

Влияет все и шланги и (особенно)геометрия сопла, и насадка инжектора. А вот как все это рассчитывать - вопрос. Фотки печи выложу в ближайшее время (как только притащу к ней чела с фотиком).

Гриня 05-09-2007 07:16

Alhim, неправду пишете.
Osm, уточните что вы понимаете под "подаётся к соплу под определённым давлением". Давление непосредственно перед сужающейся частью сопла, или на выходе из балона, и после него по трубопроводу и только потом форкамера.
В любом случае влияние шлангов сказывается только на падении давления в них.

Расход газа[кг/(м**2 сек)] не зависит от конфигурации сопла, только от давления и температуры газа непосредственно перед соплом, ну еще гаммы понятно. НО если вы хотите получить нормальную струю при отношении давлений Пфоркамеры/Патм>1.89 то надо грамотно профилировать расширяющуюся часть и здесь уже от давления и желаемых результатов многое зависит.

Р.С. в книжке на аглицком на которую я сцылил это есть,
на русском это есть в любом учебнике по газовой динамике. Глава ускорение газового потока.

Osm 05-09-2007 11:28

2Гриня
Я имел ввиду давление на выходе из редуктора, после редуктора шланг до сопла.
Только я не совсем понимаю. Если я на сопле поставлю барометр, он что покажет давление отличное от того что показывает редуктор?
Насчёт струи речи не идёт. Я просто хочу понять - какой расход газа у инжекционной горелки с определёнными параметрами (диаметр сопла и давление подаваемого газа я знаю.) и подобрать диаметр сопла таким, чтобы при давлении равным давлению в бытовой сети расход был такой же, подведя потом необходимое количество воздуха я получу горелку аналогичной мощности.

Гриня 05-09-2007 11:44

конечно, на шланге идет падение давления, как и на всяком сопротивлении.
давление у вас какое, больше 0.89 атмосфер избыточных?

расход в критическом сечении

q=P/sqrt(T)*((2/k+1)**(k+1/2(k-1)))*sqrt(k/R) [кг/м**2 сек]

P,T-давление полное в паскалях и температура в кельвинах перед соплом
sqrt-корень квадратный
k-показатель адиабаты
**- возведение в степень
R-газовая постоянная в Си(кг а не моли)

Osm 05-09-2007 13:17

2Гриня
избыточное давление в бытовой сети, как я понял 13 мбар.
насчёт формулы - не понял, т.е. зависимости от диаметра сопла нет совсем?

Гриня 05-09-2007 14:04

я же размерность написал, кг/м**2 сек, домножаете на площадь сопла и получаете кг/сек.

Alhim 05-09-2007 14:15

Хм, я почему-то полагал что расход через сопло зависит от его геометрии. Гриня, а не могли бы вы подсказать как инжектор рассчитать. Дано - диаметр газового сопла 1 мм давление на входе в сопло 4 ати,диаметр трубы инжектора 40мм, длинна 100 мм. Вопрос какое количество воздуха инжектируется?

Osm 05-09-2007 15:45

так насчёт количества инжектируемого воздуха как раз ничего сказать и нельзя, это как раз я так понимаю является предметом проектирования конкретной горелки.

Гриня 06-09-2007 08:11

quote: так насчёт количества инжектируемого воздуха как раз ничего сказать и нельзя, это как раз я так понимаю является предметом проектирования конкретной горелки.

так и есть, можно попробовать отмаштабировать по уже известной горелке.
площадь трубы пропорционально расходу топлива(на первый взгляд), длину трубы 5-7 диаметров(из книги соотношение).

здесь собственно 2 вопроса, чтобы засосало столько сколько надо с учетом кпд(диаметр), и чтобы все это фифективно смешалось т.е диаметр слоя смешения =диаметру трубы=>длина трубы.
если второе еще куда не шло, то что делать с первым я не представляю.

проще не греть голову, а сделать по уже готовым чертежам

Гриня 06-09-2007 13:05

дружно ищем книги.
В.П. Михеев
Газовое топливо и его сжигание
недра 1966

В.В. Мурзаков
Основы теории и практики сжигания газа в паровых котлах
Энергия 1964

Иванов Ю.В.
Основы расчета и проетировния газовых горелок.

ключевые слова думаю понятны.
сканера у меня нет, перебивать сильно кучеряво

Osm 06-09-2007 16:27

ок, санкс.

Alhim 07-09-2007 01:12

Да не вы не поняли - горелка есть и нормально работает (фото на днях выложу - извиняйте за задержку сейчас болею) , вот только не понятно какая атмосфера в печке получается при работе - окислительная или восстановительная.

tov. Gnom 09-09-2007 18:32

Подскажите какой в среднем расход у горелки получается? И как долго заготовка порядка 5 мм прогревается.

Osm 18-09-2007 10:24

Первое фото - печь во время работы, работает на полную мощьность (улитка включена).
Второе - верх печи видно корпус горелки, верх горелочного камня, вентилятор и форсунку.
Третье - ну это,собственно, слиток который за эту плавку вышел (примерно 1,7-2 % углерода, из-за быстрого охлаждения получились пустоты внутри, расковать не удалось, лопнул.
Четрертое - крышка горелки снята, видно горелочный камень.
Пятое - собс-но крышка горелки с инжектором, видно запальное отверстие в горелочном камне.

Osm 27-09-2007 06:30

Спасибо, большое.
Скажите, пожалуйста, получается, что у Вас к форсунке подходит масло под давлением и воздух, а для чего нужна ещё улитка? Она создаёт разрежение в горелочном камне или для лучшего смешения смеси?

Alhim 27-09-2007 15:28

Улитка нужна для подачи дополнительного воздуха. Он входит в корпус горелки тангенциально и закручивает поток, ну и для охлаждения инжектора тоже.

Инжекционными называются горелки, в которых образо­вание газовоздушной смеси происходит за счет энергии струи газа, подсасывающей воздух из окружающего пространства внутрь горелки. У инжекционных горелок низкого давления к фронту горения поступает только часть необходимого для сго­рания воздуха (первичный воздух). Остальной воздух (вторич­ный) поступает к пламени из окружающего пространства.

Р ис. 15. Инжекционная горелка низкого давления

Так как такие горелки инжектируют не весь необходимый для го­рения воздух, их еще называют горелками с неполной инжекцией воздуха. Первичный воздух составляет в таких горелках 40-60% воздуха, необходимого для горения.

Основными частями инжекционных горелок являются ре­гулятор первичного воздуха, сопло, смеситель и коллектор (рис. 15).

Регулятор первичного воздуха представляет собой вращаю­щийся диск, который может перемещаться «от горелки - к горелке». Он регулирует количество первичного воздуха, посту­пающего в горелку. Сопло служит для придания газовой струе скорости, которая обеспечивает подсос необходимого воздуха. В смесителе горелки происходит перемешивание газа и возду­ха. Из смесителя газовоздушная смесь поступает в коллектор, который и распределяет газовоздушную смесь по выходным отверстиям. Форма коллектора и расположение отверстий за­висит от типа горелок и их назначения.

Инжекционные горелки низкого давления имеют ряд поло­жительных качеств, благодаря которым широко применяются в бытовых газовых приборах.

Преимущества инжекционных горелок низкого давления :

Простота конструкции;

Устойчивая работа горелки при изменении нагрузки;

Возможность полного сжигания газа;

Отсутствие подачи воздуха под давлением.

Рис. 16. Горелка плиты

На рис. 16 изображена горелка стола плиты. Газ выходит из сопла и попадает в смеситель, где происходит образование газовоздушной смеси. Горелка не имеет регулятора подачи первичного воздуха. При увеличении давления газа в сети за пределы устойчивой работы горелки возможен частичный от­рыв. В этом случае необходимо уменьшать подачу газа на го­релку с помощью крана горелки. Насадок горелки свободно устанавливается на смеситель. В крышке имеются выходные отверстия, через которые выходит газовоздушная смесь. Го­релка изготавливается из алюминиевых сплавов.



К достоинствам инжекционных горелок относится их свойс­тво саморегулирования , т.е. поддержание постоянной про­порции между количеством подаваемого в горелку газа и ко­личеством инжектируемого воздуха. При увеличении давления увеличивается количество воздуха, поступающего в горелку, при уменьшении - уменьшается. Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени: увеличивать и уменьшать давление газа пе­ред горелкой можно лишь в определенных пределах.

Вопросы для повторения

1. Какие вещества образуются при полном сгорании при­родного газа?

2. Каковы причины неполного сгорания газа?

3. Что такое отрыв?

4. В чем причины отрыва?

5. Что такое проскок?

6. В чем причины проскока?

7. Какие горелки называют инжекционными?

8. Опишите конструкцию инжекционной горелки низкого давления.

9. Каковы достоинства инжекционных горелок?

Оборудование

Газовые плиты

Большую часть бытового газоиспользующего оборудова­ния в России составляют газовые плиты, в эксплуатации их бо­лее 40 млн. штук.

Газовая плита

Бытовые плиты предназначены для приготовления пищи. Использование их в других целях, в частности, для отопления помещений, не допускается. Плиты могут работать:

На природном газе номинальным давлением 130 мм в.ст. или 200 мм в.ст.;

На сжиженном углеводородном газе номинальным дав­лением 300 мм в.ст.

Для перевода плиты с газа одного вида или давления на газ другого вида (давления) необходимо заменить сопла горелок. На соплах должна быть маркировка с указанием размера от­верстия.

Плита изготавливается в виде тумбы (рис. 17), в которую вмонтированы духовой шкаф и вспомогательный шкаф, где допускается хранить только негорючие предметы.

В верхней части плиты расположен столс варочными го­релками. Посуда устанавливается на решетку стола, которая должна быть съемной и фиксироваться на столе.

Горелки стола могут иметь различную конструкцию, но по принципу действия все они являются инжекционными горелка­ми низкого давления.

На современных четырехгорелочных плитах горелки стола бывают трех мощностей: пониженной, нормальной (2 шт.) и повышенной.

Чтобы добраться до газопровода плиты - рампы, необхо­димо снять стол и распределительный щиток. Рампа изготав­ливается из стальной трубы, чаще всего условным проходом D y 15 (полдюйма). На рампе установлены краны горелок. Краны плиты - конусные, прижатие пробки к корпусу обеспечи­вается пружиной (рис. 18).

Рис. 18. Кран плиты

Кран должен фиксироваться в закрытом положении. От­крытие крана должно проводиться после выведения крана из фиксированного положения. Из всего газоиспользующего оборудования краны плиты работают в наиболее тяжелых ус­ловиях, так как они располагаются непосредственно над ду­ховым шкафом. Краны плиты при включенной духовке могут нагреваться до 145°С.

Смазка кранов должна быть тугоплав­кой и обеспечивать их работу в течение 3 лет. Стержень крана удерживается с помощью стопорного винта. На стержень наде­вается ручка крана.

Ручки кранов современных плит должны иметь индикацию, чтобы по их положению можно было определить одно из трех положений крана: «Закрыто», «Большое пламя» или «Малое пламя». Краны поворачиваются из закрытого положения в от­крытое против часовой стрелки.

Духовой шкаф современных плит имеет теплоизоляцию из минваты, закрытую сверху алюминиевой фольгой. В духовом шкафу имеется основная горелка (самая мощная горелка пли­ты), а также может быть жарочная горелка (гриль). Одновре­менная подача газа на основную и жарочную горелки не до­пускается. При горении основной горелки продукты сгорания поднимаются вверх, что не позволит нормально гореть распо­ложенной сверху жарочной горелке. Она либо потухнет, ли­бо будет гореть с неполным сгоранием газа. Чтобы избежать одновременной подачи газа на основную и жарочную горел­ки, кран для этих горелок делают общим. При повороте крана против часовой стрелки газ идет на основную горелку, по ча­совой - на жарочную.

Жарочная горелка - инжекционная низкого давления . Что­бы тепло от нее шло вниз, ее делают горелкой инфракрасно­го излучения. От пламени горелки разогревается до свечения металлическая панель либо сетка, инфракрасное излучение без потерь идет через воздух вниз и обжаривает продукты. Допус­кается одновременная работа горелок духовки и горелок сто­ла. При этом горелки стола должны работать без отрыва и проскока пламени.

Дверка духовки должна фиксироваться в открытом и за­крытом положении. Стекло дверки духовки - жаростойкое каленое. Противни и решетки в духовке должны свободно пе­ремещаться и не выпадать из направляющих в холодном и на­гретом состоянии.

Существует группа бытовых плит, у которых горелки сто­ла - газовые, а в духовом шкафу установлены электрические нагреватели - ТЭНы. Один ТЭН устанавливается внизу, дру­гой - вверху. Электрическая духовка обеспечивает лучшее качество выпечки по сравнению с газовой, так как возможна одновременная работа двух ТЭНов. Это обеспечивает более равномерную подачу тепла к выпекаемому изделию. Основная горелка газовой духовки большую часть тепла к выпекаемому изделию подает снизу, поэтому выпечка довольно часто пригорает.

Современные плиты все чаще оборудуют устройствами, ко­торые повышают удобство и безопасность ее использования. Это электророзжиг горелок, автоматика «Газ-контроль», элек­тропривод вертела, терморегулятор духовки.

Электророзжиг горелки происходит при проскоке искры между насадкой горелки и установленным рядом разрядником (рис. 19).

Рис. 19. Схема электророзжига

Чтобы искра могла пробить воздух между разрядником и насадкой горелки, в плите имеется умножитель напряжения (УН), который повышает напряжение до нескольких тысяч вольт. Электророзжиг бывает одноискровый, когда после каждого нажатия кнопки проскакивает искра, и многоискровый, когда искры проскакивают через определенные промежутки времени все время, пока нажата кнопка розжига. Многоискро­вый розжиг реже выходит из строя.

Особенно важна качественная работа электророзжига ос­новной горелки духовки. Во-первых, горелка духовки - самая мощная, поэтому через ее сопло выходит большое количество газа. Во-вторых, над горелкой устанавливается лист, в резуль­тате создается замкнутый объем (одно из условий взрыва). Ес­ли розжиг не происходит в течение нескольких секунд, возможен взрыв.

Нельзя производить электророзжиг горелок духов­ки при закрытой дверце духовки.

Устройство для контроля пламени (автоматика «Газ-конт­роль») должно прекращать подачу газа к горелке при ее поту­хании. Как показывает опыт работы аварийно-диспетчерской службы, довольно часто причиной загазованности в кухне бы­вает выход газа через не горящие горелки плиты. Это может произойти при неправильном розжиге, когда открывают газ к одной горелке, а поджечь пытаются другую, при выплескива­нии из посуды кипящей воды, при задувании небольшого пла­мени сквозняком и т. п.

Автоматика «Газ-контроль» состоит из термопары и элек­тромагнитного клапана. При нажатии на ручку крана клапан открывается, газ поступает к горелке, где его поджигают. От пламени горелки разогревается термопара. Она начинает вы­рабатывать напряжение, которое поступает на электромагнит, который удерживает клапан в открытом положении. Время разогрева термопары - 3-5 секунд, после этого ручку крана можно отпустить. Если горелка по какой-либо причине погас­нет, термопара остынет и перестанет вырабатывать напряже­ние. Электромагнит отпустит клапан, подача газа к горелке прекратится.

Электропривод вертела устанавливается на задней стенке духовки. Он состоит из электромотора и механического редук­тора, понижающего число оборотов.

Терморегулятор духовки поддерживает заданную темпера­туру в духовом шкафу при работе основной горелки. Напро­тив ручки крана основной горелки на распределительном щит­ке имеются цифры. Каждой цифре соответствует та темпера­тура в духовом шкафу, которую будет поддерживать основная горелка. При уменьшении температуры подача газа на горелку увеличивается, и температура поднимается. Если температура растет сверх настроенной величины, подача газа уменьшается. Терморегулятор состоит из термобаллона, капиллярной труб­ки и мембраны. Термобаллон находится в духовом шкафу и соединен капиллярной трубкой с мембраной, которая управ­ляет клапаном в кране. Вся система наполнена специальной жидкостью. При нагреве термобаллона жидкость расширяет­ся, ее давление передается по трубке к мембране. Мембрана придвигает клапан к седлу, подача газа уменьшается.

Если духовка не имеет терморегулятора, в ней устанавлива­ется термоуказатель, который работает, в диапазоне темпера­тур 160-270°С. Термоуказатель имеет шкалу с цифрами. По­ложение стрелки напротив той или иной цифры соответствует определенной температуре в духовке. В паспорте на плиту име­ется таблица, в которой обозначено, какая температура соот­ветствует той или иной цифре термоуказателя.

Электрооборудование плиты работает от переменного тока напряжением 220 В частотой 50Гц. Существуют плиты, элект­рооборудование которых работает от автономного источника постоянного тока (аккумулятор, батареи) напряжением от 1,5 до 12 В.

Средний срок службы современной плиты-не менее 14 лет. Плита не подлежит ремонту в том случае, если у нее прогорела духовка.

Неисправности плит

Пробка крана туго поворачивается - кран необходимо сма­зать специальной смазкой - НК-50, ГАЗ-41 и т.п. Не допуска­ется применение солидола, технического вазелина и подобных смазок. Качество крана зависит от того, насколько хорошо пробка притерта к корпусу. Пробка каждого крана притирает­ся к корпусу индивидуально. При смазке крана важно следить, чтобы отверстия в пробке и корпусе не забивались, их необхо­димо периодически прочищать.

Отрыв пламени горелок - при возможности регулирования подачи первичного воздуха - отрегулировать, в остальных случаях - уменьшить подачу газа на горелку краном.

Утечки в соединениях. В конструкции плиты имеется мно­жество разъемных соединений. При изменении свойств уплотнительных материалов (высыхании, старении) в них появляют­ся утечки, которые устраняют, применяя разрешенные матери­алы - лен, ленту ФУМ, паронит и т. п.

Розжиг горелок плиты

Розжиг горелок описан в данном разделе в объеме инструк­тажа, то есть так, как его необходимо объяснить абоненту при первичном пуске газа:

Убедиться в отсутствии запаха газа;

Открыть форточку;

Проверить тягу в вентканале;

Убедиться, что краны на плите закрыты;

Открыть кран на опуске;

Поднести зажженную спичку к разжигаемой горелке, от­крыть кран горелки;

Отрегулировать горение, убедиться в устойчивой работе горелок;

Не оставлять работающую плиту без присмотра;

По окончании пользования закрыть краны на плите и кран на опуске.

Проточные водонагреватели

Колонки предназначены для горячего водоснабжения - нагрева воды, используемой в санитарных целях: стирка, купа­ние, мытье посуды и т.п.

Основными узлами колонки являются (рис. 20):

Газоотвод;

Теплообменник (радиатор);

Основная горелка;

Автоматика безопасности.

Рис. 20. Колонка

Газоотвод служит для удаления продуктов сгорания в дымоотводящий патрубок прибора. Колонки устанавливаются с отводом продуктов сгорания в дымоход. Площадь сечения ды­мохода должна быть не меньше площади сечения дымоотводящего патрубка колонки.

Теплообменник служит для нагрева продуктами сгорания протекающей через него воды. Он состоит из калорифера и огневой камеры («рубашки»), опоясанной змеевиком. Кало­рифер - это система медных трубок, на которые насажены и припаяны медные пластины. Применение меди обусловлено ее химической стойкостью и высокой теплопроводностью. В пос­леднее время появились колонки, имеющие биметаллический теплообменник. Это медная трубка, оребрение которой вы­полнено стальной пластиной.

Основная горелка колонки - инжекционная низкого давле­ния. Она имеет большую мощность для того, чтобы прогреть проточную воду, особенно зимой, за то небольшое время, пока вода идет через радиатор.

Автоматика безопасности колонки контролирует :

Проток воды;

Пламя запальника (или основной горелки);

Тягу в дымоходе;

Повышение температуры воды сверх установленной (не на всех колонках).

Автоматика по протоку воды - блок-кран - состоит из двух частей - газовой и водяной. Это наиболее сложный узел колонки. Блок-кран обеспечивает подачу газа к основной го­релке при открытии водозабора (наличии протока воды) и отключение основной горелки при прекращении водозабора (отсутствии протока). Кроме того, блок-кран блокирует ос­новную горелку при розжиге запальника: сначала зажигает­ся запальник и только потом основная горелка. В блок-кране имеется конусный кран, который обеспечивает ручное регули­рование подачи газа на основную горелку.

Запальник - это инжекционная горелка низкого давле­ния малой мощности (на современных колонках - не более 350 Вт). Запальная горелка выполняет две функции:

Разжигает основную горелку;

Обеспечивает работу автоматики.

Автоматика безопасности по пламени на современных ко­лонках может быть двух видов. В первом случае она состоит из термопары и электромагнитного клапана. При погасании за­пальника она прекращает подачу газа на основную горелку и запальник. Во втором случае контроль пламени производится датчиком ионизации, который может следить за пламенем за­пальника или основной горелки. При отсутствии пламени за­крывается электромагнитный клапан на входе газа в колонку.

Автоматика по тяге должна прекращать подачу газа на ос­новную горелку и запальник при отсутствии тяги в дымохо­де. Время срабатывания - не меньше 10 секунд, но не больше 60 секунд.

Автоматика по максимальной температуре воды отключает основную горелку и запальник при нагреве воды сверх опре­деленной температуры. Она защищает радиатор от перегрева , при котором он выходит из строя (температура срабатыва­ния - 90-95°С), либо от образования накипи в теплообмен­нике. В этом случае температура срабатывания - около 80°С. Автоматика по максимальной температуре воды имеется толь­ко на современных колонках. Наиболее современные модели колонок имеют автоматику, которая изменяет подачу газа на горелку в зависимости от протока воды через колонку.

Средний срок службы современных колонок - не менее 12 лет.

Колонка КГИ-56

Колонка КГИ-56 давно снята с производства, но в эксплу­атации находится достаточно большое количество этих аппа­ратов. Простота конструкции, надежность, наличие запасных частей приводят к тому, что КГИ-56 еще долго будет нахо­диться в эксплуатации. Колонка КГИ-56 имеет следующие тех­нические характеристики:

давление воды - 0,5-6 кгс/см 2 ;

расход воды - 7-10 л/мин.

Теплообменник (радиатор ) КГИ-56 имеет высокую огне­вую камеру, опоясанную змеевиком, который припаивается к «рубашке».

Горелка КГИ-56 - односопловая, что и обусло­вило высокую огневую камеру радиатора, так как происходит не очень хорошее смешивание газа с первичным воздухом.

Рис. 21. Схема термоклапана

На горелке установлена автоматика по пламени (термоклапан), которая состоит из биметаллической пластины, на которой подвешен клапан, и запальника (рис. 21). При нагревании биметаллической пластины запальником она сгибается, и клапан открывает проход газа на горелку. При погасании запальника пластина остывает, выпрямляется, и клапан перекрывает проход газа на основную горелку.

Блок-кран состоит из газовой и водяной частей, которые крепятся друг к другу тремя винтами (рис. 22). Блок-кран обес­печивает подачу газа на основную горелку при наличии водо­забора и ее отключение при прекращении водозабора (автома­тика по протоку воды).

Рис. 22. Блок-кран КГИ-56

В газовой части имеются два конусных крана: один регули­рует подачу газа на основную горелку, другой - на запальник. В кране на основной горелке устроен клапан, который откры­вает подачу газа под действием штока водяной части. На кла­пан давит малая пружина, большая пружина служит для фик­сации пробки в корпусе.

В водяной части между крышкой и корпусом зажата мембра­на, на которую опирается тарелочка со штоком. Холодная вода подводится к водяной части снизу. Через отверстие диаметром 3,3 мм давление холодной воды передается в подмембранное пространство водяной части блок-крана. Следовательно, давление под мембраной равно давлению воды в водопроводе.

Далее вода проходит через радиатор и возвращается в водяную часть. При этом нагретая вода передает давление через отверстие диа­метром 2 мм воде, заполняющей надмембранное пространство. Это давление при протоке воды через колонку всегда будет меньше того, которое давит на мембрану снизу, за счет разности в диаметрах отверстий в под- и надмембранное пространство и потерь из-за трения. Мембрана выгибается вверх, выталкивая при этом тарелочку со штоком. Шток приподнимает клапан над седлом пробки газовой части блок-крана, преодолевая при этом действие на клапан сверху малой пружины и открывая проход газа из внутренней полости пробки на горелку. При прекраще­нии протока воды давление под мембраной и над мембраной выравнивается, мембрана перестает поднимать шток. Клапан под действием малой пружины закроет проход газа.