Чему равно кол во теплоты. «Количество теплоты

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

Если в стакане с кипятком оставить холодную ложку, то через некоторое время ее температура сравняется с температурой воды. Вода немного остывает, а ложка, наоборот, нагревается. Температура у них становится одинаковой и приходит в равновесие, некоторое количество теплоты переходит от более горячего к более холодному телу.

С точки зрения современной молекулярно-кинетической теории от предмета с высокой температурой произошел переход энергии к предмету с низкой температурой. И такой переход происходит, пока не сравняется температура обоих тел, т.е. они придут к состоянию По сути дела, понятие количество теплоты, являющееся мерой переноса энергии, сохранилось с тех пор, когда физики пользовались таким понятием, как теплород.

Однако это не означает, что сегодня нельзя им руководствоваться. Это понятие довольно точно характеризует процессы, происходящие при теплообмене. Общепринято количество теплоты обозначать буквой Q и измерять в Джоулях. Или еще пользуются устаревшими единицами измерения - калорией и (более крупной) килокалорией. Теперь, наверное, надо немного коснуться того, что будет происходить с веществом при получении какой-то энергии извне.

При теплообмене получаемая энергия (тепло) может расходоваться на нагревание вещества или предмета (чайная ложка в стакане), изменение его агрегатного состояния - плавление (масло на сковородке) или парообразование (чайник на плите). Понятно, что это разные процессы, и для каждого из описанных явлений потребуется свое количество энергии. Ученые в конце концов установили, как можно осуществить расчет количества теплоты, требующейся в каждом конкретном случае.

Правда, здесь тоже все оказалось не так просто. В том случае, если не меняется, получаемая энергия пропорциональна массе тела и разнице температур между взаимодействующими телами. Это должно быть понятно по следующему примеру. Если в стакан с кипятком поместить легкую ложку, то ложка быстро нагреется, а если легкий стакан с кипятком поставить на массивную металлическую плиту, то изменение температуры плиты можно будет зафиксировать только с помощью специальных приборов.

В описанной зависимости не учтен еще один фактор - свойства самого вещества. Для описания характеристик материала используется специальный параметр - так называемая Эта величина характеризует количество теплоты, которое надо передать веществу для изменения его температуры на 1 °С. У каждого материала эта величина, характеризующая способность принимать (отдавать) тепло, своя.

Если же в процессе теплообмена происходит изменение состояния тела, т.е. оно плавится или превращается в пар, в таком случае говорят немного о других вещах. Для расплавления вещества к нему подводят количество теплоты, называемой теплотой плавления, а для образования пара - теплотой парообразования.

При этом вместо при расчетах используется или парообразования. Благодаря этим коэффициентам можно найти количество теплоты, требуемое для плавления или перевода в пар нужного количества вещества. Для этого необходимо только умножить значение коэффициента удельной теплоты плавления или парообразования на массу вещества. В итоге получится искомое количество теплоты для получения нужного результата (плавления или парообразования). Упомянутые коэффициенты легко можно найти в справочниках.

Вот так можно описать, что собой представляет понятие количество теплоты, с чем оно связано, на что тратится, и как можно определить и рассчитать выделяемое (поглощаемое) тепло при различных физических процессах.

Вам уже известно, что внутренняя энергия тела может изменяться как путём совершения работы, так и путём теплопередачи (без совершения работы). Если изменение внутренней энергии происходит путём теплопередачи, то переход энергии от одних тел к другим осуществляется теплопроводностью, конвекцией или излучением.

    Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты.

Для того чтобы вычислить количество теплоты, необходимо узнать, от каких величин оно зависит.

Будем нагревать от двух одинаковых горелок два сосуда (рис. 14). В одном сосуде находится 1 кг воды, а в другом - 2 кг. Начальная температура воды в обоих сосудах одинакова. Мы заметим, что за одно и то же время во втором сосуде вода нагреется на меньшее число градусов, хотя оба сосуда получают одинаковое количество теплоты.

Рис. 14. Нагревание воды разной массы

Следовательно, количество теплоты, которое необходимо для нагревания тела, зависит от его массы.

Итак, чем больше масса тела, тем большее количество теплоты надо затратить, чтобы изменить его температуру на одно и то же число градусов .

При остывании тело передаёт окружающим предметам тем большее количество теплоты, чем больше его масса.

Вам хорошо известно, что, если необходимо нагреть полный чайник (с водой) до температуры 50 °С, потребуется меньше времени, чем для нагревания чайника с водой той же массы до 100 °С. В первом случае воде будет передано меньшее количество теплоты, чем во втором.

Следовательно, количество теплоты, которое необходимо для нагревания, зависит от того, на сколько градусов нагревается тело. Это значит, что количество теплоты зависит от разности температур тела.

Нальём в один сосуд воду, а в другой такой же сосуд - растительное масло (рис. 15). Массы воды и масла возьмём равные. Оба сосуда будем нагревать на одинаковых горелках. Опыт начнём при одинаковой начальной температуре воды и растительного масла. Измерив через некоторое время (например, 5 мин) температуру нагревшихся воды и масла, мы увидим, что масло имеет более высокую температуру» чем вода, хотя обе жидкости получили от горелок равные количества теплоты.

Рис. 15. Нагревание разных веществ равной массы

Из опыта нетрудно сделать вывод, что для нагревания равных масс воды и масла на одинаковую температуру требуется различное количество теплоты. Для масла требуется количества теплоты меньше, для воды больше.

Следовательно, количество теплоты, которое необходимо для нагревания тела, зависит от того, из какого вещества оно состоит, т. е. от рода вещества.

Итак, количество теплоты, которое необходимо для нагревания тела (или выделяемое при остывании), зависит от массы этого тела, от изменения его температуры и рода вещества .

Количество теплоты обозначают буквой Q. Как и всякий другой вид энергии, количество теплоты измеряют в джоулях (Дж) или в килоджоулях (кДж).

1 кДж = 1000 Дж.

Однако измерять количество теплоты учёные стали задолго до того, как в физике появилось понятие энергии. Тогда была установлена особая единица для измерения количества теплоты - калория (кал) или килокалория (ккал). (Калория - от лат. калор - тепло, жар.)

1 ккал = 1000 кал.

Калория - это количество теплоты, которое необходимо для нагревания 1 г воды на 1°С.

1 кал = 4,19 Дж ≈ 4,2 Дж.

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж.

Вопросы

  1. Что такое количество теплоты?
  2. Как зависит количество теплоты от изменения температуры тела?
  3. Почему нельзя только по изменению температуры тела судить о полученном им количестве теплоты?
  4. Как зависит количество теплоты от массы тела?
  5. Опишите опыт, показывающий, что количество теплоты зависит от рода вещества, из которого состоит тело.
  6. Какими единицами измеряют внутреннюю энергию и количество теплоты?

Упражнение 6

  1. Утюг нагрет до 80 °С, а батарея отопления - до 40 °С. Можно ли утверждать, что утюг, остывая до комнатной температуры, передаст окружающей среде большее количество теплоты?
  2. Какое тело отдаст большее количество теплоты: ртуть в термометре или ртуть в бутыли объёмом 0,5 л при понижении их температуры на 2 °С?

Процесс передачи энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей . Теплообмен происходит между телами, имеющими разную температуру. При установлении контакта между телами с различными температурами происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже. Энергия, переданная телу в результате теплообмена, называется количеством теплоты .

Удельная теплоемкость вещества:

Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики количество теплоты равно изменению внутренней энергии тела: .

Средняя энергия беспорядочного поступательного движения молекул пропорциональна абсолютной температуре. Изменение внутренней энергии тела равно алгебраической сумме изменений энергии всех атомов или молекул, число которых пропорционально массе тела, поэтому изменение внутренней энергии и, следовательно, количество теплоты пропорционально массе и изменению температуры:

Коэффициент пропорциональности в этом уравнении называется удельной теплоемкостью вещества . Удельная теплоемкость показывает, какое количество теплоты необходимо для нагревания 1 кг вещества на 1 К.

Работа в термодинамике:

В механике работа определяется как произведение модулей силы и перемещения и косинуса угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела относительно друг друга. В результате меняется объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но равна изменению не кинетической энергии тела, а его внутренней энергии.

При совершении работы (сжатии или расширении) изменяется внутренняя энергия газа. Причина этого состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия.

Вычислим работу газа при расширении. Газ действует на поршень с силой , где- давление газа, а- площадь поверхностипоршня. При расширении газа поршень смещается в направлении силына малое расстояние. Если расстояние мало, то давление газа можно считать постоянным. Работа газа равна:

Где - изменение объема газа.

В процессе расширения газа совершает положительную работу, так как направление силы и перемещения совпадают. В процессе расширения газ отдает энергию окружающим телам.

Работа, совершаемая внешними телами над газом, отличается от работы газа только знаком , так как сила, действующая на газ, противоположна силе, с которой газ действует на поршень, и равна ей по модулю (третий закон Ньютона); а перемещение остается тем же самым. Поэтому работа внешних сил равна:

Первый закон термодинамики:

Первый закон термодинамики является законом сохранения энергии, распространенным на тепловые явления. Закон сохранения энергии: энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, а изменяться может лишь внутренняя энергия.

Внутренняя энергия может изменяться двумя способами: теплопередачей и совершением работы. В общем случае внутренняя энергия изменяется как за счет теплопередачи, так и за счет совершения работы. Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если система изолирована, то над ней не совершается работа и она не обменивается теплотой с окружающими телами. Согласно первому закону термодинамики внутренняя энергия изолированной системы остается неизменной .

Учитывая, что , первый закон термодинамики можно записать так:

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами .

Второй закон термодинамики: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Обучающая цель: Ввести понятия количества теплоты и удельной теплоемкости.

Развивающая цель: Воспитывать внимательность; учить думать, делать выводы.

1. Актуализация темы

2. Объяснение нового материала. 50 мин.

Вам уже известно, что внутренняя энергия тела может изменяться как путем совершения работы, так и путем теплопередачи (без совершения работы).

Энергия, которую получает или теряет тело при теплопередаче, называют количеством теплоты. (запись в тетрадь)

Значит и единицы измерения количества теплоты тоже Джоули (Дж) .

Проводим опыт: два стакана в одном 300 г. воды, а в другом 150 г. и железный цилиндр массой 150 г. Оба стакана ставятся на одну и ту же плитку. Через некоторое время термометры покажут, что вода в сосуде, в котором находится тело, нагревается быстрее.

Это означает, что для нагревания 150 г. железо требуется меньше количество теплоты, чем для нагревания 150 г. воды.

Количество теплоты, переданное телу, зависит от рода вещества, из которого изготовлено тело. (запись в тетрадь)

Предлагаем вопрос: одинаковое ли количество теплоты требуется для нагревания до одной и той же температуры тел равной массы, но состоящих из разных веществ?

Проводим опыт с прибором Тиндаля по определению удельной теплоемкости.

Делаем вывод: тела из разных веществ, но одинаковой массы, отдают при охлаждении и требуют при нагревании на одно и то же число градусов разное количество теплоты.

Делаем выводы:

1. Для нагревания до одной и той же температуры тел равной массы, состоящих из разных веществ, требуется различное количество теплоты.

2.Тела равной массы, состоящие из разных веществ и нагретые до одинаковой температуры. При охлаждении на одно и тоже число градусов отдают различное количество теплоты.

Делаем заключение, что количество теплоты, необходимое для нагревания на один градус единицы масс разных веществ, будет различным.

Даем определение удельной теплоемкости.

Физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 градус, называется удельной теплоемкостью вещества.

Вводим единицу измерения удельной теплоемкости: 1Дж/кг*градус.

Физический смысл термина: удельная теплоемкость показывает, на какую величину изменяется внутренняя энергия 1г (кг.) вещества при нагревании или охлаждении его на 1 градус.

Рассматриваем таблицу удельных теплоемкостей некоторых веществ.

Решаем задачу аналитическим путем

Какое количество теплоты требуется, чтобы нагреть стакан воды (200 г.) от 20 0 до 70 0 С.

Для нагревания 1 г. на 1 г. Требуется - 4,2 Дж.

А для нагревания 200 г. на 1 г. потребуется в 200 больше - 200*4,2 Дж.

А для нагревания 200 г. на (70 0 -20 0) потребуется еще в (70-20) больше - 200 * (70-20) *4,2 Дж

Подставляя данные, получим Q = 200 * 50*4,2 Дж = 42000 Дж.

Запишем полученную формулу через соответствующие величины

4. От чего зависит количество теплоты, полученное телом при нагревании?

Обращаем внимании, что количество теплоты, необходимое для нагревания какого либо тела, пропорционально массе тела и изменению его температуры.,

Имеются два цилиндра одинаковой массы: железный и латунный. Одинаковое ли количество теплоты необходимо, чтобы нагреть их на одно и то же число градусов? Почему?

Какое количество теплоты необходимо, чтобы нагреть 250 г. воды от 20 о до 60 0 С.

Какая связь между калорией и джоулем?

Калория – это количество теплоты, которое необходимо для нагревания 1 г воды на 1 градус.

1 кал = 4.19=4.2 Дж

1ккал=1000кал

1ккал=4190Дж=4200Дж

3. Решение задач. 28 мин.

Если прогретые в кипящей воде цилиндры из свинца, олова и стали массой 1 кг поставить на лед, то они охладятся, и часть льда под ними растает. Как изменится внутренняя энергия цилиндров? Под каким из цилиндров растает больше льда, под каким – меньше?

Нагретый камень массой 5 кг. Охлаждаясь в воде на 1 градус, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня

При закалке зубила его сначала нагрели до 650 0 , потом опустили в масло, где оно стыло до 50 0 С. Какое при этом выделилось количество теплоты, если его масса 500 гр.

Какое количество теплоты пошло на нагревание от 20 0 до 1220 0 С. стальной заготовки для коленчатого вала компрессора массой 35 кг.

Самостоятельная работа

Какой вид теплопередачи?

Учащиеся заполняют таблицу.

  1. Воздух в комнате нагревается через стены.
  2. Через открытое окно, в которое входит теплый воздух.
  3. Через стекло, которое пропускает лучи солнца.
  4. Земля нагревается лучами солнца.
  5. Жидкость нагревается на плите.
  6. Стальная ложка нагревается от чая.
  7. Воздух нагревается от свечи.
  8. Газ двигается около тепловыделяющих деталей машины.
  9. Нагревание ствола пулемета.
  10. Кипение молока.

5. Домашнее задание: Перышкин А.В. “Физика 8” § §7, 8; сборник задач 7-8 Лукашик В.И. №№778-780, 792,793 2 мин.