Физические основы квантовой механики. Квантовая механика

Представления в физике атомного ядра

Появление квантовой механики.

Квантовая механика – физическая теория, изучающая движение на микроуровне.

Еще в конце XIX века большинство ученых склонялись к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но впервые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XX века.

В 1896 году французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли.

В его исследование включились французские физики, супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). В 1898 году были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», - полоний и радий. Это свойство супруги Кюри назвали радиоактивностью.

А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу - электрон.

В 1911 году знаменитый английский физик Эрнест Резерфорд (1871-1937) предложил свою модель атома, которая получила название планетарной.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома.

Принципы квантовой механики

Принцип неопределенности Гейзенберга: «Невозможно одновременно с точностью определить координаты и скорость квантовой частицы»

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях.

Принцип Гейзенберга играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира.

Чтобы отыскать, например, книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат - зафиксировали ее пространственные координаты (определили местоположение книги в комнате).



В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Им был сформулирован принцип неопределенности , названный теперь его именем:

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему GPS, чтобы определить местоположение книги, система вычислит их с точностью до 2-3 метров. И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью). Допустим, что нужно зафиксировать пространственное местонахождение электрона. Нам по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит детекторам сигнал с информацией о его местопребывании.

Если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится.

Принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно.

Ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты.

Принцип дополнительности Н. Бора: «Объекты микромира описываются и как частицы, и как волны, и одно описание дополняет другое».

В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке - вторая костяшка завалит третью, третья четвертую и так далее. Это - волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно.

Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов ), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны. Если «выстреливать» электроны по одному, каждый из них будет оставлять четкий след на экране - то есть вести себя как частица. Самое интересное, что, то же самое будет, если вместо пучка электронов вы возьмете пучок фотонов: в пучке они будут вести себя как волны, а по отдельности - как частицы

Иными словами, в микромире объекты, которые ведут себя как частицы, при этом как бы «помнят» о своей волновой природе, и наоборот. Это странное свойство объектов микромира получило название квантово-волнового дуализма .

Принцип дополнительности - простая констатация этого факта. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу - они именно дополняют одно другое, что и отражено в названии принципа.

Строение атома.

Планетарная модель строения атома была предложена в результате открытия ядра атома Резерфордом:
1.В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2.Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а. е. м.).
3.Вокруг ядра по замкнутым орбитам вращаются электроны. Их число равно заряду ядра.
Ядро атома

Ядро атома состоит из протонов и нейтронов (общее название - нуклоны). Оно характеризуется тремя параметрами: А - массовое число, Z - заряд ядра, равный числу протонов, и N - число нейтронов в ядре. Эти параметры связаны между собой соотношением:
А = Z + N.
Число протонов в ядре равно порядковому номеру элемента.
Заряд ядра обычно пишут внизу слева от символа элемента, а массовое число - вверху слева (заряд ядра часто опускают).
Пример 40 18 Ar: ядро этого атома содержит 18 протонов и 22 нейтрона.
Атомы, ядра которых содержат одинаковое число протонов и разное число нейтронов, называются изотопами, например: 12/6С и 13/6С. Изотопы водорда имеют специальные символы и названия: 1 Н - протий, 2 D - дейтерий, 3 Т - тритий. Химические свойства изотопов идентичны, некоторые физические свойства очень незначительно различаются..

Радиоактивность

Радиоактивность - это самопроизвольное, спонтанное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц. Соответствующие элементы назвали радиоактивными или радионуклеидами.

В 1899 году Э. Резерфорд в результате экспериментов обнаружил, что радиоактивное излучение неоднородно и под действием сильного магнитного поля распадается на две составляющие, a - и b -лучи. Третью составляющую, g -лучи, обнаружил французский физик П. Вилард в 1900 году.

Гамма-лучи вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект - энергия гамма-луча поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным, т.е. превращается в ион).

Выбивание светом электронов с поверхности токопроводящих материалов - явление, широко используемое сегодня в повседневной жизни. Например, некоторые системы сигнализации работают за счет передачи видимых или инфракрасных световых лучей на фотоэлектрический элемент , из которого выбиваются электроны, обеспечивающие электропроводность цепи, в которую он включен. Если на пути светового луча появляется препятствие, свет на датчик поступать перестает, поток электронов прекращается, цепь разрывается - и срабатывает электронная сигнализация.

Облучение γ-лучами.в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевые болезни. Эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и фактором.

Применение гамма- излучения:

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Уровнемеры

Гамма-высотометры, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Виды радиоактивности

Деление атомного ядра бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер -экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии. Установлено, что радиоактивны все химические элементы СС порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Весной 1913 года Содди сформулировал правило:

Испускание α-частиц уменьшает атомную массу на 4 и смещает его на 2 места влево по ПС.

Испускание β-частиц смещает элемент вправо на 1 место, почти не меняя его массы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ, ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)

А.А. БЕРЗИН, В.Г. МОРОЗОВ

ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Учебное пособие

Москва – 2004

Введение

Квантовая механика появилась сто лет назад и оформилась в стройную физическую теорию примерно к 1930 году. В настоящее время она считается фундаментом наших знаний об окружающем мире. Довольно долго применение квантовой механики к прикладным задачам ограничивалось ядерной энергетикой (по большей части военной). Однако после того, как в 1948 году был изобретен транзистор

Один из основных элементов полупроводниковой электроники, а в конце 1950-х годов был создан лазер - квантовый генератор света, стало ясно, что открытия в квантовой физике имеют огромный практический потенциал и серьезное знакомство с этой наукой необходимо не только для профессиональных физиков, но и для представителей других специальностей - химиков, инженеров и даже биологов.

Поскольку квантовая механика все больше стала приобретать черты не только фундаментальной, но и прикладной науки, возникла проблема обучения ее основам студентов нефизических специальностей. С некоторыми квантовыми идеями студент впервые знакомится в курсе общей физики, но, как правило, это знакомство ограничивается не более чем случайными фактами и их сильно упрощенными объяснениями. С другой стороны, полный курс квантовой механики, читаемый на физических факультетах университетов, явно избыточен для тех, кто хотел бы приложить свои знания не к раскрытию тайн природы, а к решению технических и других практических задач. Трудность “адаптации” курса квантовой механики к потребностям обучения студентов прикладных специальностей была замечена давно и до сих пор полностью не преодолена, несмотря на многочисленные попытки создания “переходных” курсов, ориентированных на практические применения квантовых законов. Связано это со спецификой самой квантовой механики. Вопервых, для понимания квантовой механики от студента требуется основательное знание классической физики: механики Ньютона, классической теории электромагнетизма, специальной теории относительности, оптики и т.д. Во-вторых, в квантовой механике для правильного описания явлений в микромире приходится жертвовать наглядностью. Классическая физика оперирует более или менее наглядными понятиями; их связь с экспериментом относительно проста. Иное положение в квантовой механике. Как отметил Л.Д. Ландау, внесший значительный вклад в создание квантовой механики, “необходимо понять то, что мы уже не можем себе вообразить”. Обычно трудности при изучении квантовой механики принято объяснять ее довольно абстрактным математическим аппаратом, применение которого неизбежно из-за потери наглядности понятий и законов. Действительно, чтобы научиться решать квантовомеханические задачи, надо знать дифференциальные уравнения, достаточно свободно обращаться с комплексными числами, а также уметь делать многое другое. Все это, впрочем, не выходит за рамки математической подготовки студента современного технического вуза. Настоящая трудность квантовой механики связана не только и даже не столько с математикой. Дело в том, что выводы квантовой механики, как и любой физической теории, должны предсказывать и объяснятьреальные эксперименты , поэтому нужно научиться связывать абстрактные математические конструкции с измеряемыми физическими величинами и наблюдаемыми явлениями. Вырабатывается это умение каждым человеком индивидуально, в основном, путем самостоятельного решения задач и осмысления результатов. Еще Ньютон заметил: “при изучении наук примеры часто важнее правил”. В отношении квантовой механики эти слова содержат большую долю истины.

Предлагаемое читателю пособие основано на многолетней практике чтения в МИРЭА курса “Физика 4”, посвященного основам квантовой механики, студентам всех специальностей факультетов электроники и РТС и студентам тех специальностей факультета кибернетики, где физика относится к основным учебным дисциплинам. Содержание пособия и изложение материала обусловлены рядом объективных и субъективных обстоятельств. Прежде всего необходимо было учесть, что курс “Физика 4” рассчитан на один семестр. Поэтому из всех разделов современной квантовой механики отобраны те, которые непосредственно связаны с электроникой и квантовой оптикой - наиболее перспективными областями применения квантовой механики. Однако, в отличие от курсов общей физики и прикладных технических дисциплин, мы стремились изложить эти разделы в рамках единого и достаточно современного подхода с учетом возможностей студентов для его усвоения. Объем пособия превышает содержание лекций и практических занятий, так как в курсе “Физика 4” предусмотрено выполнение студентами курсовых работ или индивидуальных заданий, которые требуют самостоятельного изучения вопросов, не включенных в план лекций. Изложение этих вопросов в учебниках по квантовой механике, ориентированных на студентов физических факультетов университетов, часто превышает уровень подготовки студента технического вуза. Таким образом, настоящее пособие может быть использовано как источник материала для курсовых работ и индивидуальных заданий.

Важной частью пособия являются упражнения. Некоторые из них приводятся непосредственно в тексте, остальные помещены в конце каждого параграфа. Многие упражнения снабжены указаниями для читателя. В связи с отмеченной выше “необычностью” понятий и методов квантовой механики выполнение упражнений следует рассматривать как совершенно необходимый элемент изучения курса.

1. Физические истоки квантовой теории

1.1. Явления, противоречащие классической физике

Начнем с краткого обзора явлений, которые не смогла объяснить классическая физика и которые привели, в конце концов, к возникновению квантовой теории.

Спектр равновесного излучения черного тела. Напомним, что в физике

черным телом (часто говорят - “абсолютно черным телом”) называется тело, которое полностью поглощает падающее на него электромагнитное излучение любой частоты.

Абсолютно черное тело является, конечно, идеализированной моделью, однако ее можно реализовать с высокой точностью с помощью простого устройства

Замкнутой полости с малым отверстием, внутренние стенки которой покрыты веществом, хорошо поглощающим электромагнитное излучение, например, сажей (см. Рис. 1.1.). Если температура стенок T поддерживается постоянной, то в конце концов установится тепловое равновесие между веществом стенок

Рис. 1.1. и электромагнитным излучением в полости. Одной из проблем, которую активно обсуждали физики в конце XIX века, была такая: как распределена энергия равновесного излучения по

Рис. 1.2.

частотам? Количественно это распределение описывается спектральной плотностью энергии излучения u ω . Произведениеu ω dω есть энергия электромагнитных волн в единице объема с частотами в интервале отω доω +dω . Спектральную плотность энергии можно измерить, анализируя спектр излучения из отверстия полости, изображенной на Рис. 1.1. Экспериментальная зависимостьu ω для двух значений температуры приведена на Рис. 1.2. С ростом температуры максимум кривой смещается в сторону высоких частот и при достаточно высокой температуре частотаω m может достигнуть области видимого глазом излучения. Тело начнет светиться, причем с дальнейшим ростом температуры цвет тела будет меняться от красного к фиолетовому.

Пока мы говорили об экспериментальных данных. Интерес к спектру излучения черного тела был вызван тем, что функция u ω может бытьточно вычислена методами классической статистической физики и электромагнитной теории Максвелла. Согласно классической статистической физике, в тепловом равновесии энергия любой системы распределяется равномерно по всем степеням свободы (теорема Больцмана). Каждая независимая степень свободы поля излучения - электромагнитная волна с определенной поляризацией и частотой. По теореме Больцмана средняя энергия такой волны в тепловом равновесии при температуреT равнаk B T , гдеk B = 1, 38· 10− 23 Дж/ K - постоянная Больцмана. Поэтому

где c - скорость света. Итак, классическое выражение для равновесной спектральной плотности излучения имеет вид

u ω=

k B T ω2

π2 c3

Эта формула есть знаменитая формула Рэлея-Джинса. В классической физике она являетсяточной и, в то же время, абсурдной. В самом деле, согласно ей, в тепловом равновесии при любой температуре имеются электромагнитные волны сколь угодно высоких частот (т. е. ультрафиолетовое излучение, рентгеновское излучение и даже смертельное для человека гамма-излучение), причем, чем выше частота излучения, тем больше энергии на него приходится. Очевидное противоречие между классической теорией равновесного излучения и экспериментом получило в физической литературе эмоциональное название -ультрафиолетовая

катастрофа . Отметим, что известный английский физик лорд Кельвин, подводя итоги развития физики в XIX веке, назвал задачу о равновесном тепловом излучении одной из главных нерешенных проблем.

Фотоэффект . Другим “слабым местом” классической физики оказался фотоэффект - выбивание электронов из вещества под действием света. Совершенно непонятным было то, что кинетическая энергия электронов не зависит от интенсивности света, которая пропорциональна квадрату амплитуды электрического поля

в световой волне и равна среднему потоку энергии, падающему на вещество. С другой стороны, энергия вылетающих электронов существенно зависит от частоты света и линейно растет с ростом частоты. Это также невозможно объяснить

в рамках классической электродинамики, поскольку поток энергии электромагнитной волны, согласно теории Максвелла, не зависит от ее частоты и полностью определяется амплитудой. Наконец, эксперимент показывал, что для каждого вещества существует так называемая красная граница фотоэффекта, т. е. минималь-

ная частота ω min , при которой начинается выбивание электронов. Еслиω < ω min , то свет с частотойω не выбьет ни одного электрона, независимо от интенсивности.

Эффект Комптона . Еще одно явление, которое не могла объяснить классическая физика, было открыто в 1923 году американским физиком А. Комптоном. Он обнаружил, что при рассеянии электромагнитного излучения (в рентгеновском диапазоне частот) на свободных электронах частота рассеянного излучения оказывается меньше, чем частота падающего излучения. Этот экспериментальный факт противоречит классической электродинамике, согласно которой частоты падающего и рассеянного излучения должны быть в точности равны. Чтобы убедиться в сказанном, не нужна сложная математика. Достаточно вспомнить классический механизм рассеяния электромагнитной волны заряженными частицами. Схема

рассуждений примерно такова. Переменное электрическое поле E (t ) =E 0 sinωt

падающей волны действует на каждый электрон силой F (t ) =−eE (t ), где−e -

(m e

заряд электрона

Электрон приобретает ускорение a (t ) =F (t )/m e

электрона), которое изменяется со временем с той же частотой ω , что и поле в падающей волне. Согласно классической электродинамике, заряд, движущийся с ускорением, излучает электромагнитные волны. Это и есть рассеянное излучение. Если ускорение изменяется со временем по гармоническому закону с частотойω , то излучаются волны с той же частотой. Появление рассеянных волн с частотами меньшими, чем частота падающего излучения, явно противоречит классической электродинамике.

Устойчивость атомов . В 1912 году произошло очень важное для всего дальнейшего развития естественных наук событие - была выяснена структура атома. Английский физик Э. Резерфорд, проводя эксперименты по рассеянию α -частиц в веществе, установил, что положительный заряд и практически вся масса атома сосредоточены в ядре с размерами порядка 10− 12 - 10− 13 см. Размеры ядра оказались ничтожно малы по сравнению с размерами самого атома (примерно 10− 8 см.). Для объяснения результатов своих экспериментов Резерфорд выдвинул гипотезу, что атом устроен аналогично солнечной системе: легкие электроны движутся по орбитам вокруг массивного ядра подобно тому, как планеты движутся вокруг Солнца. Силой, удерживающей электроны на орбитах, является сила кулоновского притяжения ядра. На первый взгляд такая “планетарная модель” кажется весьма

1 Символомe везде обозначаетсяположительный элементарный зарядe = 1, 602· 10− 19 Кл.

привлекательной: она наглядна, проста и вполне согласуется с экспериментальными результатами Резерфорда. Более того, на основе этой модели легко оценить энергию ионизации атома водорода, содержащего всего один электрон. Оценка дает неплохое согласие с экспериментальным значением энергии ионизации. К сожалению, понимаемая буквально, планетарная модель атома имеет неприятный недостаток. Дело в том, что с точки зрения классической электродинамики такой атом просто не может существовать; он нестабилен . Причина этого довольно проста: электрон движется по орбите с ускорением. Даже если величина скорости электрона не меняется, все равно есть ускорение, направленное к ядру (нормальное или “центростремительное” ускорение). Но, как уже отмечалось выше, заряд, движущийся с ускорением, должен излучать электромагнитные волны. Эти волны уносят энергию, поэтому энергия электрона убывает. Радиус его орбиты уменьшается и в конце концов электрон должен упасть на ядро. Простые вычисления, которые мы не будем приводить, показывают, что характерное “время жизни” электрона на орбите составляет примерно 10− 8 секунд. Таким образом, классическая физика не способна объяснить устойчивость атомов.

Приведенные примеры не исчерпывают всех трудностей, с которыми встретилась классическая физика на рубеже XIX и XX веков. Другие явления, где ее выводы противоречит эксперименту, мы рассмотрим позже, когда будет развит аппарат квантовой механики и мы сможем сразу же дать правильное объяснение. Постепенно накапливаясь, противоречия между теорией и экспериментальными данными привели к осознанию того, что с классической физикой “не все в порядке” и необходимы совершенно новые идеи.

1.2. Гипотеза Планка о квантовании энергии осциллятора

В декабре 2000 года исполнилось сто лет квантовой теории. Эту дату связывают с работой Макса Планка, в которой он предложил решение проблемы равновесного теплового излучения. Для простоты Планк выбрал в качестве модели вещества стенок полости (см. Рис. 1.1.) систему заряженных осцилляторов, т. е. частиц, способных совершать гармонические колебания около положения равновесия. Если ω - собственная частота колебаний осциллятора, то он способен излучать и поглощать электромагнитные волны той же частоты. Пусть стенки полости на Рис. 1.1. содержат осцилляторы со всевозможными собственными частотами. Тогда, после установления теплового равновесия, средняя энергия, приходящаяся на электромагнитную волну с частотойω , должна быть равна средней энергии осциллятораE ω с той же собственной частотой колебаний. Вспоминая рассуждения, приведенные на стр. 5, запишем равновесную спектральная плотность излучения в таком виде:

1 На латыни слово “quantum” буквально означает “порция” или “кусок”.

В свою очередь, квант энергии пропорционален частоте осциллятора:

Некоторые люди предпочитают использовать вместо циклической частоты ω так называемую линейную частотуν =ω/ 2π , которая равна числу колебаний за секунду. Тогда выражение (1.6) для кванта энергии можно записать в виде

ε = h ν.

Величина h = 2π 6, 626176· 10− 34 Дж· с также называется постоянной Планка1 .

Исходя из предположения о квантовании энергии осциллятора, Планк получил для спектральной плотности равновесного излучения следующее выражение2 :

π2 c3

e ω/kB T

− 1

В области низких частот (ω k B T ) формула Планка практически совпадает с формулой Релея-Джинса (1.3), а на высоких частотах (ω k B T ) спектральная плотность излучения, в соответствии с экспериментом, быстро стремится к нулю.

1.3. Гипотеза Эйнштейна о квантах электромагнитного поля

Хотя гипотеза Планка о квантовании энергии осциллятора “не вписывается” в классическую механику, ее можно было трактовать в том смысле, что, по-видимому, механизм взаимодействия света с веществом таков, что энергия излучения поглощается и испускается только порциями, величина которых дается формулой (1.5). В 1900 году о строении атомов практически ничего не было известно, поэтому сама по себе гипотеза Планка еще не означала полный отказ от классических законов. Более радикальную гипотезу высказал в 1905 году Альберт Эйнштейн. Анализируя закономерности фотоэффекта, он показал, что все они естественным образом объясняются, если принять, что свет определенной частотыω состоит из отдельных частиц (фотонов), обладающих энергией

1 Иногда, чтобы подчеркнуть, какая именно постоянная Планка имеется в виду, называют “перечеркнутой постоянной Планка”.

2 Теперь это выражение называется формулой Планка.

где A вых - работа выхода, т. е. энергия, необходимая для преодоления сил, удерживающих электрон в веществе1 . Зависимость энергии фотоэлектронов от частоты света, описываемая формулой (1.11), прекрасно согласовывалась с экспериментальной зависимостью, причем величина в этой формуле оказалась очень близка к значению (1.7). Отметим, что, приняв гипотезу фотонов, можно было объяснить и закономерности равновесного теплового излучения. Действительно, поглощение и излучение веществом энергии электромагнитного поля происходит квантамиω потому, что поглощаются и испускаются отдельные фотоны, имеющие именно такую энергию.

1.4. Импульс фотона

Введение представления о фотонах в какой-то степени возрождало корпускулярную теорию света. То, что фотон - “настоящая” частица, подтверждает анализ эффекта Комптона. С точки зрения фотонной теории рассеяние рентгеновских лучей можно представить как индивидуальные акты столкновений фотонов с электронами (см. Рис. 1.3.), в которых должны выполняться законы сохранения энергии и импульса.

Закон сохранения энергии в этом процессе имеет вид

соизмеримыми со скоростью света, поэтому

выражение для энергии электрона нужно

брать в релятивистском виде, т. е.

Eэл = me c2 ,

E эл=

m e 2c 4+ p 2c 2

где p - величина импульса электрона после столкновения с фотоном, аm

электрона. Закон сохранения энергии в эффекте Комптона выглядит так:

ω + me c2 = ω+

m e 2c 4+ p 2c 2

Между прочим, отсюда сразу видно, что ω < ω ; это наблюдается и в эксперименте. Чтобы записать закон сохранения импульса в эффекте Комптона, необходимо найти выражение для импульса фотона. Это можно сделать на основе следующих простых рассуждений. Фотон всегда движется со скоростью светаc , но, как известно из теории относительности, частица, движущаяся со скоростью света, должна

иметь нулевую массу. Так им образом, из общего выражения для релятивистской

энергии E =m 2 c 4 +p 2 c 2 следует, что энергия и импульс фотона связаны соотношениемE =pc . Вспоминая формулу (1.10), получаем

Теперь закон сохранения импульса в эффекте Комптона можно записать в виде

Решение системы уравнений (1.12) и (1.18), которое мы оставляем читателю (см. упражнение 1.2.), приводит к следующей формуле для изменения длины волны рассеянного излучения ∆λ =λ − λ :

называется комптоновской длиной волны частицы (массы m ), на которой происходит рассеяние излучения. Еслиm =m e = 0, 911· 10− 30 кг - масса электрона, тоλ C = 0, 0243· 10− 10 м. Результаты измерений ∆λ , проведенных Комптоном, а затем многими другими экспериментаторами, полностью согласуются с предсказаниями формулы (1.19), причем значение постоянной Планка, которая входит в выражение (1.20), совпадает со значениями, полученными из экспериментов по равновесному тепловому излучению и фотоэффекту.

После появления фотонной теории света и ее успехов в объяснении ряда явлений возникла странная ситуация. В самом деле, попробуем ответить на вопрос: что же такое свет? С одной стороны, в фотоэффекте и эффекте Комптона он ведет себя как поток частиц - фотонов, но, с другой стороны, явления интерференции и дифракции столь же упорно показывают, что свет - электромагнитныеволны . На основе “макроскопического” опыта мы знаем, что частица - это объект, имеющий конечные размеры и движущийся по определенной траектории, а волна заполняет область пространства, т. е. является непрерывным объектом. Как совместить эти две взаимно исключающие точки зрения на одну и ту же физическую реальность - электромагнитное излучение? Парадокс “волна–частица” (или, как предпочитают говорить философы, корпускулярно-волновой дуализм) для света был объяснен лишь в квантовой механике. Мы вернемся к нему после того, как познакомимся с основами этой науки.

1 Напомним, что модуль волнового вектора называется волновым числом.

Упражнения

1.1. Используя формулу Эйнштейна (1.11), объяснить существование красной границы вещества. ω min для фотоэффекта. Выразить ω min через работу выхода электрона из

1.2. Вывести выражение (1.19) для изменения длины волны излучения в эффекте Комптона.

Указание: Разделив равенство (1.14) наc и используя соотношение между волновым числом и частотой (k =ω/c ), запишем

p2 + m2 e c2 = (k − k) + me c.

После возведения в квадрат обеих частей, получим

где ϑ - угол рассеяния, показанный на Рис. 1.3. Приравняв правые части (1.21) и (1.22), приходим к равенству

me c(k − k) = kk(1 −cos ϑ) .

Остается умножить это равенство на 2π , разделить наm e ckk и перейти от волновых чисел к длинам волн (2π/k =λ ).

2. Квантование энергии атома. Волновые свойства микрочастиц

2.1. Теория атома Бора

Прежде чем перейти непосредственно к изучению квантовой механики в ее современном виде, мы кратко обсудим первую попытку применить идею Планка о квантовании к проблеме строения атома. Речь пойдет о теории атома, предложенной в 1913 году Нильсом Бором. Основная цель, которую ставил перед собой Бор, состояла в том, чтобы объяснить удивительно простую закономерность в спектре излучения атома водорода, которую сформулировал Ритц в 1908 году в виде так называемого комбинационного принципа. Согласно этому принципу, частоты всех линий в спектре водорода можно представить как разности некоторых величинT (n ) (“термов”), последовательность которых выражается через целые числа.

ПЛАН

ВВЕДЕНИЕ 2

1. ИСТОРИЯ СОЗДАНИЯ КВАНТОВОЙ МЕХАНИКИ 5

2. МЕСТО КВАНТОВОЙ МЕХАНИКИ СРЕДИ ДРУГИХ НАУК О ДВИЖЕНИИ. 14

ЗАКЛЮЧЕНИЕ 17

ЛИТЕРАТУРА 18

Введение

Квантовая механика - теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах. Законы квантовой механики (в дальнейшем К.м.) составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.

Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Квантовая механика становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

1. История создания квантовой механики

В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классической теории электромагнитного поля (классической электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (дуализм света); вторая - с невозможностью объяснить на основе классических представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счете, к открытию законов К. м.

Впервые квантовые представления (в т. ч. квантовая постоянная h ) были введены в физику в работе М. Планка (1900), посвященной теории теплового излучения.

Существовавшая к тому времени теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическое) равновесие между излучением и веществом не может быть достигнуто, т.к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классической теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определенными порциями энергии - квантами. Величина такого кванта энергии зависит от частоты света n и равна E = h n. От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в двух ее формах (1927).

Первая начинается с работы Эйнштейна (1905), в которой была дана теория фотоэффекта - явления вырывания светом электронов из вещества.

В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями - квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету - что сам свет состоит из отдельных порций - световых квантов (которые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний n волны соотношением Планка E = h n.

Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Кинематика такого столкновения определяется законами сохранения энергии и импульса, причем фотону наряду с энергией E = h n следует приписать импульс р = h / l = h n / c , где l - длина световой волны.

Энергия и импульс фотона связаны соотношением E = cp, справедливым в релятивистской механике для частицы с нулевой массой. Т. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. В этом проявляется дуализм света, его сложная корпускулярно-волновая природа.

Дуализм содержится уже в формуле E = h n , не позволяющей выбрать какую-либо одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой - частота n является характеристикой волны. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других - корпускулярную. По существу разрешение этого противоречия и привело к созданию физических основ квантовой механики.

В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от ее природы, следует поставить в соответствие волну, длина которой L связана с импульсом частицы р соотношением. По этой гипотезе не только фотоны, но и все «обыкновенные частицы» (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в явлении дифракции.

В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у других частиц, и справедливость формулы де Бройля была подтверждена экспериментально

В 1926 Э. Шрёдингер предложил уравнение, описывающее поведение таких «волн» во внешних силовых полях. Так возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерялитивистской К. м.

В 1928 П. Дирак сформулировал релятивистское уравнение, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных уравнений релятивистской квантовой механики.

Вторая линия развития начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (колебательных систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучения веществом происходят квантами энергии h n. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантована, т. е. разность соседних уровней энергии (энергий, которыми может обладать осциллятор) должна равняться h n, где n - частота колебаний атомов.

Теория Эйнштейна, уточнённая П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.

В 1913 Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны.

Рассмотрение такого движения на основе классических представлений приводило к парадоксальному результату - невозможности стабильного существования атомов: согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию. Радиус его орбиты должен уменьшится и за время порядка 10 –8 сек электрон должен упасть на ядро. Это означало, что законы классической физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определённым условиям квантования. Т. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии.

Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классической орбиты была целым кратным постоянной Планка.

Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн.

Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии E i , на другой с меньшей энергией E k , при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход:

h n = E i - E k . (1)

Так возникает линейчатый спектр - основная особенность атомных спектров, Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул.

Существование уровней энергии в атомах было непосредственно подтверждено Франка - Герца опытами (1913-14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетических уровней атома.

Н. Бор, используя квантовую постоянную h , отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля. Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах возникновение молекулярной связи.

«Полуклассическая» теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одногоуровня энергии на другой.

Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно.

Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины - матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании квантовой механики сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование квантовой механики как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано неопределённостей соотношение - важнейшее соотношение, освещающее физический смысл уравнений квантовой механики., её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты квантовой механики. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) - спин.

Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.

В течение короткого времени квантовой механика была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными.

КВАНТОВАЯ МЕХАНИКА
фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую основу, на которой строится современная теория атомов, атомных ядер, молекул и физических тел, а также элементарных частиц, из которых все это состоит. Квантовая механика была создана учеными, стремившимися понять, как устроен атом. Атомные процессы в течение многих лет изучали физики и особенно химики; при изложении данного вопроса мы будем, не вдаваясь в подробности теории, следовать историческому ходу развития предмета. См. также АТОМ .
Зарождение теории. Когда Э.Резерфорд и Н.Бор предложили в 1911 ядерную модель атома, это было подобно чуду. В самом деле, она была построена из того, что было известно уже более 200 лет. Это была, в сущности, коперниковская модель Солнечной системы, воспроизведенная в микроскопическом масштабе: в центре находится тяжелая масса, вскоре получившая название ядра, вокруг которой вращаются электроны, числом которых определяются химические свойства атома. Но мало того, за этой наглядной моделью стояла теория, которая позволила начать расчеты некоторых химических и физических свойств веществ, по крайней мере построенных из наименьших и наиболее простых атомов. Теория Бора - Резерфорда содержала ряд положений, которые здесь полезно напомнить, поскольку все они в том или ином виде сохранились и в современной теории. Во-первых, важен вопрос о природе сил, связывающих атом. С 18 в. было известно, что электрически заряженные тела притягивают или отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними. Используя в качестве пробных тел альфа-частицы, возникающие в результате радиоактивных превращений, Резерфорд показал, что тот же самый закон электрического взаимодействия (закон Кулона) справедлив в масштабах, в миллион миллионов раз меньших тех, для которых он был первоначально экспериментально установлен. Во-вторых, нужно было ответить на вопрос о том, как электроны движутся по орбитам под действием этих сил. Здесь вновь опыты Резерфорда, казалось бы, показывали (и Бор принял это в своей теории), что законы движения Ньютона, сформулированные в его Началах (Principia Mathematica, 1687), можно использовать для описания движения частиц в этих новых масштабах микромира. В-третьих, вставал вопрос о стабильности. В ньютоновско-кулоновском атоме, как и в Солнечной системе, размеры орбит произвольны и зависят лишь от того, каким образом система была первоначально приведена в движение. Однако все атомы одного вещества одинаковы и к тому же стабильны, что совсем необъяснимо с точки зрения старых представлений. Бор высказал предположение, что атомные электроны следует рассматривать как движущиеся вокруг ядра лишь по определенным орбитам, которым отвечают определенные энергетические уровни, причем они должны испускать квант энергии в виде света, переходя с орбиты с более высокой энергией на орбиту с меньшей энергией. Такие "условия квантования" не вытекали ни из каких экспериментальных данных или теорий; они были приняты как постулаты. На основе этих концептуальных элементов, дополненных только что развитыми в то время представлениями М.Планка и А.Эйнштейна о природе света, Бору удалось количественно объяснить весь спектр излучения атомов водорода в газоразрядной трубке и дать качественное объяснение всех основных закономерностей периодической системы элементов. К 1920 пришло время взяться за проблему спектра излучения более тяжелых атомов и вычислить интенсивность химических сил, связывающих атомы в соединениях. Но здесь иллюзия успеха померкла. На протяжении ряда лет Бор и другие исследователи безуспешно пытались рассчитать спектр гелия - следующего за водородом простейшего атома с двумя электронами. Сначала вообще ничего не получалось; в конце концов несколько исследователей различными способами решили эту задачу, но ответ оказался неверным - он противоречил эксперименту. Затем выяснилось, что вообще невозможно построить сколько-нибудь приемлемую теорию химического взаимодействия. К началу 1920-х годов теория Бора исчерпала себя. Пришло время признать справедливость пророческого замечания, которое Бор еще в 1914 сделал в письме другу в присущем ему замысловатом стиле: "Я склонен полагать, что проблема связана с исключительно большими трудностями, которые можно будет преодолеть, лишь гораздо дальше отойдя от обычных соображений, чем требовалось до сих пор, и что достигнутый ранее успех был обусловлен исключительно простотой рассматривавшихся систем".
См. также
БОР Нильс Хенрик Давид ;
СВЕТ ;
РЕЗЕРФОРД Эрнест ;
СПЕКТРОСКОПИЯ .
Первые шаги. Поскольку использованная Бором комбинация существовавших ранее представлений из области электричества и механики с условиями квантования привела к неверным результатам, все это нужно было полностью или частично изменить. Основные положения теории Бора были приведены выше, а для соответствующих расчетов было достаточно не очень сложных выкладок с использованием обычной алгебры и математического анализа. В 1925 молодой немецкий физик В.Гейзенберг посетил Бора в Копенгагене, где провел с ним долгие часы в беседах, выясняя, что из теории Бора обязательно должно войти в будущую теорию, а от чего в принципе можно и отказаться. Бор и Гейзенберг сразу же согласились, что в будущей теории обязательно должно быть представлено все непосредственно наблюдаемое, а все не поддающееся наблюдению может быть изменено или исключено из рассмотрения. С самого начала Гейзенберг считал, что следует сохранить атомы, но орбиту электрона в атоме считать абстрактной идеей, поскольку ни один эксперимент не позволяет определить электронную орбиту по результатам измерений наподобие того, как это можно сделать для орбит планет. Читатель может заметить, что тут есть определенная нелогичность: строго говоря, атом столь же ненаблюдаем непосредственно, как и электронные орбиты, и вообще в нашем восприятии окружающего мира нет ни одного ощущения, которое не требовало бы разъяснения. В наши дни физики все чаще цитируют известный афоризм, который был впервые произнесен Эйнштейном в беседе с Гейзенбергом: "Что именно мы наблюдаем, нам говорит теория". Таким образом, различие между наблюдаемыми и ненаблюдаемыми величинами носит чисто практический характер, не имея никакого обоснования ни в строгой логике, ни в психологии, причем это различие, как бы оно ни проводилось, должно рассматриваться как часть самой теории. Поэтому гейзенберговский идеал теории, очищенной от всего ненаблюдаемого, есть некое направление мысли, но отнюдь не последовательный научный подход. Тем не менее он доминировал в атомной теории почти полвека после того, как был впервые сформулирован. Мы уже напоминали о составных элементах ранней модели Бора, таких, как закон Кулона для электрических сил, законы динамики Ньютона и обычные правила алгебры. Путем тонкого анализа Гейзенберг показал, что можно сохранить известные законы электричества и динамики, если найти надлежащее выражение для динамики Ньютона, а затем изменить правила алгебры. В частности, Гейзенберг высказал мысль, что, поскольку ни положение q, ни импульс p электрона не являются измеримыми величинами в том смысле, в каком ими являются, например, положение и импульс автомобиля, мы можем при желании сохранить их в теории, лишь рассматривая как математические символы, обозначаемые буквами, но не как числа. Он принял для p и q алгебраические правила, согласно которым произведение pq не совпадает с произведением qp. Гейзенберг показал, что простые расчеты атомных систем дают приемлемые результаты, если принять, что для положения q и импульса p выполняется соотношение

Где h - постоянная Планка, уже известная из квантовой теории излучения и фигурировавшая в теории Бора, а. Постоянная Планка h представляет собой обычное число, но очень малое, приблизительно 6,6Ч10-34 Дж*с. Таким образом, если p и q - величины обычного масштаба, то разность произведений pq и qp будет крайне мала по сравнению с самими этими произведениями, так что p и q можно считать обычными числами. Построенная для описания явлений микромира, теория Гейзенберга почти полностью согласуется с механикой Ньютона, когда ее применяют к макроскопическим объектам. Уже в самых ранних работах Гейзенберга было показано, что при всей неясности физического содержания новой теории она предсказывает существование дискретных энергетических состояний, характерных для квантовых явлений (например, для испускания света атомом). В более поздней работе, выполненной совместно с М. Борном и П. Йорданом в Геттингене, Гейзенберг развил формальный математический аппарат теории. Практические вычисления остались, однако, крайне сложными. После нескольких недель напряженной работы В.Паули вывел формулу для энергетических уровней атома водорода, совпадающую с формулой Бора. Но прежде чем удалось упростить вычисления, появились новые и совершенно неожиданные идеи. См. также
АЛГЕБРА АБСТРАКТНАЯ ;
ПЛАНКА ПОСТОЯННАЯ .
Частицы и волны. К 1920 физики были уже довольно хорошо знакомы с двойственной природой света: результаты одних экспериментов со светом можно было объяснить, предполагая, что свет представляет собой волны, а в других он вел себя подобно потоку частиц. Поскольку казалось очевидным, что ничто не может быть в одно и тоже время и волной, и частицей, ситуация оставалась непонятной, вызывая горячие споры в среде специалистов. В 1923 французский физик Л.де Бройль в опубликованных им заметках высказал предположение, что столь парадоксальное поведение, может быть, не является спецификой света, но и вещество тоже может в одних случаях вести себя подобно частицам, а в других подобно волнам. Исходя из теории относительности, де Бройль показал, что если импульс частицы равен p, то "ассоциированная" с этой частицей волна должна иметь длину волны l = h/p. Это соотношение аналогично впервые полученному Планком и Эйнштейном соотношению E = hn между энергией светового кванта Е и частотой n соответствующей волны. Де Бройль показал также, что эту гипотезу можно легко проверить в экспериментах, аналогичных опыту, демонстрирующему волновую природу света, и настойчиво призывал к проведению таких опытов. Заметки де Бройля привлекли внимание Эйнштейна, и к 1927 К.Дэвиссон и Л.Джермер в Соединенных Штатах, а также Дж. Томсон в Англии подтвердили для электронов не только основную идею де Бройля, но и его формулу для длины волны. В 1926 работавший тогда в Цюрихе австрийский физик Э. Шредингер, прослышав о работе де Бройля и предварительных результатах экспериментов, подтверждавших ее, опубликовал четыре статьи, в которых представил новую теорию, явившуюся прочным математическим обоснованием этих идей. Такая ситуация имеет свой аналог в истории оптики. Одной уверенности в том, что свет есть волна определенной длины, недостаточно для детального описания поведения света. Необходимо еще написать и решить выведенные Дж.Максвеллом дифференциальные уравнения, подробно описывающие процессы взаимодействия света с веществом и распространение света в пространстве в виде электромагнитного поля. Шредингер написал дифференциальное уравнение для материальных волн де Бройля, аналогичное уравнениям Максвелла для света. Уравнение Шредингера для одной частицы имеет вид


где m - масса частицы, Е - ее полная энергия, V(x) - потенциальная энергия, а y - величина, описывающая электронную волну. В ряде работ Шредингер показал, как можно использовать его уравнение для вычисления энергетических уровней атома водорода. Он установил также, что существуют простые и эффективные способы приближенного решения задач, не поддающихся точному решению, и что его теория волн материи в математическом отношении полностью эквивалентна алгебраической теории наблюдаемых величин Гейзенберга и во всех случаях приводит к тем же результатам. П.Дирак из Кембриджского университета показал, что теории Гейзенберга и Шредингера представляют собой лишь две из множества возможных форм теории. Теория преобразований Дирака, в которой важнейшую роль играет соотношение (1), обеспечила ясную общую формулировку квантовой механики, охватывающую все остальные ее формулировки в качестве частных случаев. Вскоре Дирак добился неожиданно крупного успеха, продемонстрировав, каким образом квантовая механика обобщается на область очень больших скоростей, т.е. приобретает вид, удовлетворяющий требованиям теории относительности. Постепенно стало ясно, что существует несколько релятивистских волновых уравнений, каждое из которых в случае малых скоростей можно аппрокcимировать уравнением Шредингера, и что эти уравнения описывают частицы совершенно разных типов. Например, частицы могут иметь разный "спин"; это предусматривается теорией Дирака. Кроме того, согласно релятивистской теории, каждой из частиц должна соответствовать античастица с противоположным знаком электрического заряда. В то время, когда вышла работа Дирака, были известны только три элементарные частицы: фотон, электрон и протон. В 1932 была открыта античастица электрона - позитрон. На протяжении нескольких последующих десятилетий было обнаружено много других античастиц, большинство из которых, как оказалось, удовлетворяли уравнению Дирака или его обобщениям. Созданная в 1925-1928 усилиями выдающихся физиков квантовая механика не претерпела с тех пор в своих основах каких-либо существенных изменений.
См. также АНТИВЕЩЕСТВО .
Приложения. Во всех разделах физики, биологии, химии и техники, в которых существенны свойства вещества в малых масштабах, теперь систематически обращаются к квантовой механике. Приведем несколько примеров. Всесторонне исследована структура электронных орбит, наиболее удаленных от ядра атомов. Методы квантовой механики были применены к проблемам строения молекул, что привело к революции в химии. Структура молекул обусловлена химическими связями атомов, и сегодня сложные задачи, возникающие при последовательном применении квантовой механики в этой области, решаются с помощью компьютеров. Большое внимание привлекли к себе теория кристаллической структуры твердых тел и особенно теория электрических свойств кристаллов. Практические результаты впечатляют: примерами их могут служить изобретение лазеров и транзисторов, а также значительные успехи в объяснении явления сверхпроводимости.
См. также
ФИЗИКА ТВЕРДОГО ТЕЛА ;
ЛАЗЕР ;
ТРАНЗИСТОР ;
СВЕРХПРОВОДИМОСТЬ . Многие проблемы еще не решены. Это касается структуры атомного ядра и физики элементарных частиц. Время от времени обсуждается вопрос о том, не лежат ли проблемы физики элементарных частиц за пределами квантовой механики, подобно тому как структура атомов оказалась вне области применимости динамики Ньютона. Однако до сих пор нет никаких указаний на то, что принципы квантовой механики или ее обобщения в области динамики полей где-то оказались неприменимыми. Более полувека квантовая механика остается научным инструментом с уникальной "объясняющей способностью" и не требует существенных изменений своей математической структуры. Поэтому может показаться удивительным, что до сих пор ведутся острые дебаты (см. ниже) по поводу физического смысла квантовой механики и ее истолкования.
См. также
АТОМА СТРОЕНИЕ ;
АТОМНОГО ЯДРА СТРОЕНИЕ ;
МОЛЕКУЛ СТРОЕНИЕ ;
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ .
Вопрос о физическом смысле. Корпускулярно-волновой дуализм, столь очевидный в эксперименте, создает одну из самых трудных проблем физической интерпретации математического формализма квантовой механики. Рассмотрим, например, волновую функцию, которая описывает частицу, свободно движущуюся в пространстве. Традиционное представление о частице, помимо прочего, предполагает, что она движется по определенной траектории с определенным импульсом p. Волновой функции приписывается длина волны де Бройля l = h/p, но это характеристика такой волны, которая бесконечна в пространстве, а потому не несет информации о местонахождении частицы. Волновую функцию, локализующую частицу в определенной области пространства протяженностью Dx, можно построить в виде суперпозиции (пакета) волн с соответствующим набором импульсов, и если искомый диапазон импульсов равен Dp, то довольно просто показать, что для величин Dx и Dp должно выполняться соотношение DxDp і h/4p. Этим соотношением, впервые полученным в 1927 Гейзенбергом, выражается известный принцип неопределенности: чем точнее задана одна из двух переменных x и p, тем меньше точность, с которой теория позволяет определить другую.



Соотношение Гейзенберга могло бы рассматриваться просто как недостаток теории, но, как показали Гейзенберг и Бор, оно соответствует глубокому и ранее не замечавшемуся закону природы: даже в принципе ни один эксперимент не позволит определить величины x и p реальной частицы точнее, чем это допускает соотношение Гейзенберга. Гейзенберг и Бор разошлись в интерпретации этого вывода. Гейзенберг рассматривал его как напоминание о том, что все наши знания по своему происхождению - экспериментальные и что эксперимент неизбежно вносит в исследуемую систему возмущение, а Бор рассматривал его как ограничение точности, с которой само представление о волне и частице применимо к миру атома. Гораздо более широким оказывается спектр мнений о природе самой статиcтичеcкой неопределенности. В этих неопределенностях нет ничего нового; они присущи почти каждому измерению, но обычно считают, что они обусловлены недостатками используемых приборов или методов: точное значение существует, однако найти его практически очень трудно, и потому мы рассматриваем полученные результаты как вероятные значения с присущей им статистической неопределенностью. Одна из школ физико-философской мысли, возглавлявшаяся в свое время Эйнштейном, считает, что то же самое имеет место и для микромира, и что квантовая механика с ее статистическими результатами дает лишь средние значения, которые были бы получены при многократном повторении рассматриваемого эксперимента с небольшими различиями из-за несовершенства нашего контроля. При таком воззрении точная теория каждого отдельного случая в принципе существует, просто она еще не найдена. Другая школа, исторически связанная с именем Бора, стоит на том, что индетерминизм присущ самой природе вещей и что квантовая механика - теория, наилучшим образом описывающая каждый отдельный случай, а в неопределенности физической величины находит отражение та точность, с которой эта величина может определяться и использоваться. Мнение большинства физиков склонялось в пользу Бора. В 1964 Дж. Белл, работавший тогда в ЦЕРНе (Женева), показал, что в принципе эту проблему можно решить экспериментально. Результат Белла явился, пожалуй, важнейшим с 1920-х годов сдвигом в поисках физического смысла квантовой механики. Теорема Белла, как сейчас называют этот результат, утверждает, что некоторые предсказания, сделанные на основе квантовой механики, невозможно воспроизвести путем вычислений на основе какой-либо точной, детерминированной теории с последующим усреднением результатов. Поскольку два таких метода вычислений должны давать разные результаты, появляется возможность экспериментальной проверки. Измерения, выполненные в 1970-х годах, убедительно подтвердили адекватность квантовой механики. И все же было бы преждевременно утверждать, что эксперимент подвел окончательную черту под дебатами Бора и Эйнштейна, поскольку такого рода проблемы нередко возникают как бы заново, в другом языковом обличье каждый раз, когда, казалось бы, все ответы уже найдены. Как бы то ни было, остаются и другие головоломки, напоминающие нам, что физические теории - это не только уравнения, но и словесные объяснения, связывающие кристальную сферу математики с туманными областями языка и чувственного опыта, и что это зачастую и есть самое трудное.
ЛИТЕРАТУРА
Вихман Э. Квантовая физика. М., 1977 Джеммер М. Эволюция понятий квантовой механики. М., 1985 Мигдал А.Б. Квантовая физика для больших и маленьких. М., 1989 Волкова Е.Л. и др. Квантовая механика на персональном компьютере. М., 1995

Энциклопедия Кольера. - Открытое общество . 2000 .

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.

Наименование параметра Значение
Тема статьи: ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.
Рубрика (тематическая категория) Механика

В 1900 ᴦ. немецкий физик Макс Планк предположил, что излучение и поглощение света веществом происходит конечными порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения:

где - частота испускаемого (или поглощаемого) излучения, а h – универсальная постоянная, называемая постоянной Планка. По современным данным

h = (6,62618 0,00004)∙ 10 -34 Дж∙с.

Гипотеза Планка явилась отправным пунктом возникновения квантовых представлений, положенных в основу принципиально новой физики – физики микромира, называемой квантовой физикой. Огромную роль в ее становлении сыграли глубокие идеи датского физика Нильса Бора и его школы. В корне квантовой механики лежит непротиворечивый синтез корпускулярных и волновых свойств материи. Волна – весьма протяженный в пространстве процесс (вспомните волны на воде), а частица - ϶ᴛᴏ намного более локальный, чем волна, объект. Свет при определœенных условиях ведет себя не как волна, а как поток частиц. В то же время элементарные частицы обнаруживают подчас волновые свойства. В рамках классической теории невозможно объединить волновые и корпускулярные свойства. По этой причине создание новой теории, описывающей закономерности микромира, привело к отказу от обычных представлений, справедливых для макроскопических объектов.

С квантовой точки зрения и свет, и частицы представляют из себясложные объекты, обнаруживающие как волновые, так и корпускулярные свойства (так называемый корпускулярно-волновой дуализм). Создание квантовой физики было стимулировано попытками осмыслить строение атома и закономерности спектров излучения атомов.

В конце 19 века было обнаружено, что при падении света на поверхность металла, из последней испускаются электроны. Это явление назвали фотоэффектом.

В 1905 ᴦ. Эйнштейн объяснил фотоэффект на базе квантовой теории. Он ввел предположение о том, что энергия в пучке монохроматического света состоит из порций, величина которых равна h . Физическая размерность величины h равна время∙энергия=длина∙импульс=момент количества движения. Такой размерностью обладает величина, называемая действием, и в связи с этим h называют элементарным квантом действия. Согласно Эйнштейну, электрон в металле, поглотив такую порцию энергии, совершает работу выхода из металла и приобретает кинœетическую энергию

Е к =h − А вых.

Это уравнение Эйнштейна для фотоэффекта.

Дискретные порции света позже (в 1927 ᴦ.) были названы фотонами .

В науке при определœении математического аппарата всœегда следует исходить из характера наблюдаемых экспериментальных явлений. Немецкий физик Шредингер добился грандиозных достижений, попробовав другую стратегию научного поиска: сначала математика, а затем понимание ее физического смысла и в результате интерпретация природы квантовых явлений.

Было ясно, что уравнения квантовой механики должны быть волновыми (ведь квантовые объекты обладают волновыми свойствами). Эти уравнения должны иметь дискретные решения (квантовым явлениям присущи элементы дискретности). Такого рода уравнения были известны в математике. Ориентируясь на них, Шредингер предложил использовать понятие волновой функции ʼʼψʼʼ. Для частицы, свободно движущейся вдоль оси Х, волновая функция ψ=е - i|h(Et-px) , где р - импульс, х - координата͵ Е-энергия, h-постоянная Планка. Функция ʼʼψʼʼ принято называть волновой потому, что для ее описания используется экспоненциальная функция.

Состояние частицы в квантовой механике описывается волновой функцией, позволяющей определить лишь вероятность нахождения частицы в данной точке пространства. Волновая функция описывает не сам объект и даже не его потенциальные возможности. Операции с волновой функцией позволяют вычислить вероятности квантово-механических событий.

Основополагающими принципами квантовой физики являются принципы суперпозиции, неопределœенности, дополнительности и тождественности.

Принцип суперпозиции в классической физике позволяет получить результирующий эффект от наложения (суперпозиции) нескольких независимых воздействий как сумму эффектов, вызываемых каждым воздействие в отдельности. Он справедлив для систем или полей, описываемых линœейными уравнениями. Этот принцип очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или несколькими волновыми функциями ψ 1, ψ 2 ,…ψ ń , то она может находиться в состоянии, описываемом любой линœейной комбинацией этих функций:

Ψ=c 1 ψ 1 +c 2 ψ 2 +….+с n ψ n ,

где с 1 , с 2 ,…с n – произвольные комплексные числа.

Принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн:

S = S 1 +S 2 +….+S n ,

где S 1 , S 2,….. S n – возмущения, вызываемые волной. В случае негармонической волны ее можно представить как сумму гармонических волн.

Принцип неопределœенности состоит в том, что невозможно одновременно определить две характеристики микрочастицы, к примеру, скорости и координаты. Он отражает двойственную корпускулярно-волновую природу элементарных частиц. Погрешности, неточности, ошибки при одновременном определœении в эксперименте дополнительных величин связаны соотношением неопределœенностей, установленным в 1925ᴦ. Вернером Гейзенбергом. Соотношение неопределœенностей состоит в том, что произведение неточностей любых пар дополнительных величин (к примеру, координаты и проекции импульса на нее, энергии и времени) определяется постоянной Планка h. Соотношения неопределœенностей свидетельствуют о том, что чем определœеннее значение одного из параметров, входящих в соотношения, тем неопределœеннее значение другого параметра и наоборот. Имеется в виду, что параметры измеряются одновременно.

Классическая физика приучила к тому, что всœе параметры объектов и происходящих с ними процессов бывают измерены одновременно с какой угодно точностью. Это положение опровергается квантовой механикой.

Датский физик Нильс Бор пришел к выводу, что квантовые объекты относительны к средствам наблюдения. О параметрах квантовых явлений можно судить лишь после их взаимодействия со средствами наблюдения, ᴛ.ᴇ. с приборами. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят эти явления. При этом приходится учитывать, что приборы, которые используются для измерения параметров, разнотипны. Данные, полученные при разных условиях опыта͵ должны рассматриваться как дополнительные в том смысле, что только совокупность разных измерений может дать полное представление о свойствах объекта. В этом и состоит содержание принципа дополнительности.

В классической физике измерение считалось не возмущающим объект исследования. Измерение оставляет объект неизменным. Согласно квантовой механике, каждое отдельно проведенное измерение разрушает микрообъект. Чтобы провести новое измерение, приходится заново готовить микрообъект. Это усложняет процесс синтеза измерений. В этой связи Бор утверждает взаимодополнительность квантовых измерений. Данные классических измерений не взаимодополнительны, они имеют самостоятельный смысл независимо друг от друга. Взаимодополнение имеет место там, где исследуемые объекты неотличимы друг от друга и взаимосвязаны между собой.

Бор соотносил принцип дополнительности не только с физическими науками: ʼʼцельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описанияʼʼ. По мысли Бора, возможности живых существ столь многообразны и так тесно взаимосвязаны, что при их изучении вновь приходится обращаться к процедуре взаимодополнения данных наблюдений. При этом, эта мысль Бора не получила должного развития.

Особенности и специфика взаимодействий между компонентами сложных микро- и макросистем. а также внешних взаимодействий между ними приводит к громадному их многообразию. Для микро- и макросистем характерна индивидуальность, каждая система описывается присущей только ей совокупностью всœевозможных свойств. Можно назвать различия между ядром водорода и урана, хотя оба относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системы.

При этом можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом и другими внутренними характеристиками. К примеру, всœе электроны Вселœенной считаются тождественными. Тождественные частицы подчиняются принципу тождественности – фундаментальному принципу квантовой механики, согласно которому: состояния системы частиц, получающихся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте.

Этот принцип – основное различие между классической и квантовой механикой. В квантовой механике тождественные частицы лишены индивидуальности.

СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Первые представления о строении вещества возникли в Древней Греции в 6-4 в.в. до н.э. Аристотель считал вещество непрерывным, ᴛ.ᴇ. его можно дробить на сколько угодно малые части, но так и не дойти до мельчайшей частицы, которая дальше не делилась бы. Демокрит считал, что всœе в мире состоит из атомов и пустоты. Атомы – мельчайшие частицы вещества, значит ʼʼнеделимыеʼʼ, и в представлении Демокрита атомы это сферы с зубчатой поверхностью.

Такое мировоззрение существовало вплоть до конца 19 века. В 1897ᴦ. Джозеф Джон Томсон (1856-1940ᴦ.ᴦ.), родной сын У.Томсона, дважды лауреат Нобелœевской премии открыл элементарную частицу, которая была названа электроном. Было установлено, что электрон вылетает из атомов и имеет отрицательный электрический заряд. Величина заряда электрона е =1,6.10 -19 Кл (Кулон), масса электрона m =9,11.10 -31 кᴦ.

После открытия электрона Томсон в 1903 году выдвинул гипотезу о том, что атом представляет собой сферу, по которой размазан положительный заряд, и в виде изюминок вкраплены электроны с отрицательными зарядами. Положительный заряд равен отрицательному, в целом атом электрически нейтрален (суммарный заряд равен 0).

В 1911 году проводя опыт, Эрнст Резерфорд установил, что положительный заряд не размазан по объёму атома, а занимает лишь небольшую его часть. После этого им была выдвинута модель атома, которая впоследствии получила название планетарной. Согласно этой модели атом действительно представляет собой сферу, в центре которой расположен положительный заряд, занимая малую часть этой сферы – порядка 10 -13 см. Отрицательный заряд находится на внешней, так называемой электронной оболочке.

Более совершенную квантовую модель атома предложил датский физик Н.Бор в 1913 году, работавший в лаборатории Резерфорда. Он взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Οʜᴎ сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определœенной орбите, с определœенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е 1 , Е 2 ,…Е n . Всякое изменение энергии в результате испускания или поглощения электромагнитного излучения может происходить скачком из одного состояния в другое.

2. При переходе электрона с одной стационарной орбиты на другую, происходит испускание или поглощение энергии. В случае если при переходе электрона с одной орбиты на другую энергия атома изменяется от Е m до Е n , то hv = Е m - Е n , где v – частота излучения.

Эти постулаты Бор использовал для расчета простейшего атома водорода,

Область, в которой сосредоточен положительный заряд, принято называть ядром. Было предположение, что ядро состоит из положительных элементарных частиц. Эти частицы, названные протонами (в переводе с греческого протон означает первый), были обнаружены Резерфордом в 1919 году. Их заряд по модулю равен заряду электрона (но положительный), масса протона равна 1,6724.10 -27 кᴦ. Существование протона было подтверждено в результате проведения искусственной ядерной реакции превращения азота в кислород. Атомы азота облучались ядрами гелия. В результате получался кислород и протон. Протон это стабильная частица.

В 1932 году Джеймсом Чадвиком была открыта частица, которая не имела электрического заряда и обладала массой, почти равной массе протона. Эта частица была названа нейтроном. Масса нейтрона равна 1,675.10 -27 кᴦ. Нейтрон был открыт в результате облучения α-частицами пластинки из бериллия. Нейтрон является нестабильной частицей. Отсутствие заряда объясняет его легкую способность проникать в ядра атомов.

Открытие протона и нейтрона привело к созданию протонно-нейтронной модели атома. Она была предложена в 1932 году советскими физиками Иваненко, Гапоном и немецким физиком Гейзенбергом. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода, ĸᴏᴛᴏᴩᴏᴇ состоит из одного протона.

Заряд ядра определяется количеством в нем протонов и обозначается символом Z . Вся масса атома заключена в массе его ядра и определяется массой входящих в него протонов и нейтронов, поскольку масса электрона ничтожно мала по сравнению с массами протона и нейтрона. Порядковый номер в периодической таблице Менделœеева соответствует заряду ядра данного химического элемента. Массовое число атома А равно массе нейтронов и протонов: А=Z+N , где Z – количество протонов, N – количество нейтронов. Условно любой элемент обозначается символом: А Х z .

Существуют ядра, которые содержат одинаковое число протонов, но разное число нейтронов, ᴛ.ᴇ. отличающиеся массовым числом. Такие ядра называются изотопами. К примеру, 1 Н 1 - обычный водород, 2 Н 1 - дейтерий, 3 Н 1 - тритий. Наибольшей устойчивостью обладают ядра, в которых число протонов равно числу нейтронов или тех и других одновременно = 2, 8, 20, 28, 50, 82, 126 – магические числа.

Размеры атома приблизительно 10 -8 см. Атом состоит из ядра размером в 10-13 см. Между ядром атома и границей атома находится огромное пространство по масштабам в микромире. Плотность в ядре атома огромна, приблизительно 1,5·108 т/см 3 . Химические элементы с массой А<50 называются легкими, а с А>50 – тяжелыми. В ядрах тяжелых элементов тесновато, ᴛ.ᴇ. создается энергетическая предпосылка для их радиоактивного распада.

Энергия, необходимая для расщепления ядра на составляющие его нуклоны, называют энергией связи. (Нуклоны – обобщенное название протонов и нейтронов и в переводе на русский язык означает ʼʼядерные частицыʼʼ):

Е св = Δm∙с 2 ,

где Δm – дефект массы ядра (разница между массами нуклонов, образующих ядро, и массой ядра).

В 1928ᴦ. физиком-теоретиком Дираком была предложена теория электрона. Элементарные частицы могут вести себя подобно волне – они обладают корпускулярно-волновым дуализмом. Теория Дирака дала возможность определить, когда электрон ведет себя как волна, а когда – как частица. Он заключил, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица позже была обнаружена в 1932 году и названа позитроном. Американский физик Андерсен на фотографии космических лучей обнаружил след частицы, аналогичный электрону, но с положительным зарядом.

Из теории следовало, что электрон и позитрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, ᴛ.ᴇ. квантов электромагнитного излучения. Возможен и обратный процесс, когда фотон, взаимодействуя с ядром, превращается в пару электрон – позитрон. Каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружить частицу в определœенном объёме.

В 50-х годах ХХ века было доказано существование антипротона и антинœейтрона.

Еще 30 лет назад полагали, что нейтроны и протоны – элементарные частицы, но эксперименты по взаимодействию движущихся с большими скоростями протонов и электронов показали, что протоны состоят из еще более мелких частиц. Эти частицы впервые исследовал Гелл Манн и назвал их кварками. Известно несколько разновидностей кварков. Предполагают, что существует 6 ароматов: U – кварк (up), d-кварк (down), странный кварк(strange), очарованный кварк (charm), b - кварк (beauty) , t-кварк (truth)..

Кварк каждого аромата имеет один из трех цветов: красный, зелœеный, синий. Это просто обозначение, т.к. размер кварков намного меньше длины волны видимого света и в связи с этим цвета у них нет.

Рассмотрим некоторые характеристики элементарных частиц. В квантовой механике каждой частице приписывают особый собственный механический момент, который не связан ни с перемещением ее в пространстве, ни с ее вращением. Этот собственный механический момент наз. спином . Так, в случае если повернуть электрон на 360 о, то следовало бы ожидать, что он вернется в исходное состояние. При этом исходное состояние будет достигнуто только при еще одном повороте на 360 о. Т.е., чтобы вернуть электрон в исходное состояние, его нужно повернуть на 720 о, по сравнению со спином мы воспринимаем мир лишь наполовину. Пример, на двойной проволочной петле бусинка вернется в исходное положение при повороте на 720 о. Такие частицы обладают полуцелым спином ½. Спин дает нам сведения, как выглядит частица, в случае если смотреть на нее с разных сторон. К примеру, частица со спином ʼʼ0ʼʼ похожа на точку: она выглядит одинаково со всœех сторон. Частицу со спином ʼʼ1ʼʼ можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает прежний вид при повороте на 360 о. Частицу со спином ʼʼ2ʼʼ можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется с полуоборота (180 о). Частицы с более высоким спином возвращаются в исходное состояние при повороте на еще меньшую часть полного оборота.

Частицы с полуцелым спином называются фермионами, а частицы с целым спином – бозонами. До недавнего времени считалось, что бозоны и фермионы есть единственно возможные виды неразличимых частиц. На самом делœе существует ряд промежуточных возможностей, а фермионы и бозоны - лишь два предельных случая. Такой класс частиц называют энионами.

Частицы вещества подчиняются принципу запрета Паули, открытому в 1923 году австрийским физиком Вольфганом Паули. Принцип Паули гласит: в системе двух одинаковых частиц с полуцелыми спинами в одном и том же квантовом состоянии не может находиться более одной частицы. Для частиц с целым спином ограничений нет. Это значит, что две одинаковые частицы не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределœенности. В случае если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не могут находиться долго в точках с этими координатами.

В квантовой механике предполагается, что всœе силы и взаимодействия между частицами переносятся частицами с целочисленным спином, равным 0,1,2. Это происходит следующим образом: к примеру, частица вещества испускает частицу, которая является переносчиком взаимодействия (к примеру, фотон). В результате отдачи скорость частицы меняется. Далее частица-переносчик ʼʼналетаетʼʼ на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как-будто между этими двумя частицами вещества действует сила. Частицы–переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что, в отличие от реальных, их нельзя зарегистрировать при помощи детектора частиц. При этом они существуют, потому что они создают эффект, поддающийся измерению.

Частицы-переносчики можно классифицировать на 4 типа исходя из величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействуют и от того, с какими частицами они взаимодействуют:

1) Гравитационная сила. Всякая частица находится под действием гравитационной силы, величина которой зависит от массы и энергии частицы. Это слабая сила. Гравитационные действуют на больших расстояниях и всœегда являются силами притяжения. Так, к примеру, гравитационное взаимодействие удерживает планеты на их орбитах и нас на Земле.

В квантовомеханическом подходе к гравитационному полю считается, что сила, действующая между частицами материи, переносится частицей со спином ʼʼ2ʼʼ, которая принято называть гравитоном. Гравитон не обладает собственной массой и в связи с этим переносимая им сила, является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Солнце и Земля обмениваются гравитонами. Эффект от обмена этими виртуальными частицами поддается измерению, потому что данный эффект – вращение Земли вокруг Солнца.

2) Следующий вид взаимодействия создается электромагнитными силами , которые действуют между электрически заряженными частицами. Электромагнитное взаимодействие намного сильнее гравитационного: электромагнитная сила, действующая между двумя электронами, примерно в 10 40 раз больше гравитационной силы. Электромагнитное взаимодействие обуславливает существование стабильных атомов и молекул (взаимодействие между электронами и протонами). Переносчиком электромагнитного взаимодействия выступает фотон.

3) Слабое взаимодействие . Оно отвечает за радиоактивность и существует между всœеми частицами вещества со спином ½ . Слабое взаимодействие обеспечивает долгое и ровное горение нашего Солнца, дающего энергию для протекания всœех биологических процессов на Земле. Переносчиками слабого взаимодействия являются три частицы - W ± и Z 0 -бозоны. Οʜᴎ были открыты лишь в 1983ᴦ. Радиус слабого взаимодействия чрезвычайно мал, в связи с этим его переносчики должны обладать большими массами. В соответствии с принципом неопределœенности время жизни частиц с такой большой массой должно быть чрезвычайно коротким-10 -26 с.

4) Сильное взаимодействие представляет собой взаимодействие, ĸᴏᴛᴏᴩᴏᴇ удерживает кварки внутри протонов и нейтронов, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается частица со спином ʼʼ1ʼʼ, которая принято называть глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. Кварки, благодаря глюонам, связываются парами или тройками. Сильное взаимодействие при высоких энергиях ослабевает и кварки и глюоны начинают вести себя как свободные частицы. Это свойство называют асимптотической свободой. В результате экспериментов на мощных ускорителях получены фотографии треков (следов) свободных кварков, родившихся в результате столкновения протонов и антипротонов высокой энергии. Сильное взаимодействие обеспечивает относительную стабильность и существование ядер атомов. Сильное и слабое взаимодействие характерно для процессов микромира, ведущих к взаимопревращениям частиц.

Сильные и слабые взаимодействия стали известны человеку только в первой трети 20 века в связи с изучением радиоактивности и осмыслением результатов бомбардировок атомов различных элементов α-частицами. α-частицы выбивают и протоны, и нейтроны. Цель рассуждений привела физиков к убеждению, что протоны и нейтроны сидят в ядрах атомов, будучи крепко связанными друг с другом. Налицо сильные взаимодействия. С другой стороны, радиоактивные вещества испускают α-, β- и γ-лучи. Когда в 1934 году Ферми создал первую достаточно адекватную экспериментальным данным теорию, то ему пришлось предположить наличие в ядрах атомов незначительных по своим интенсивностям взаимодействий, которые и стали называть слабыми.

Сейчас принимаются попытки объединœения электромагнитного, слабого и сильного взаимодействия, чтобы в результате получилась так называемая ТЕОРИЯ ВЕЛИКОГО ОБЪЕДИНЕНИЯ . Эта теория проливает свет на само наше существование. Не исключено, что наше существование есть следствие образования протонов. Такая картина начала Вселœенной представляется наиболее естественной. Земное вещество в основном состоит из протонов, но в нем нет ни антипротонов, ни антинœейтронов. Эксперименты с космическими лучами показали, что то же самое справедливо и для всœего вещества в нашей Галактике.

Характеристики сильного, слабого, электромагнитного и гравитационного взаимодействий приведена в таблице.

Порядок интенсивности каждого взаимодействия, указанный в таблице, определœен по отношению к интенсивности сильного взаимодействия, принятого за 1.

Приведем классификацию наиболее известных в настоящее время элементарных частиц.

ФОТОН. Масса покоя и электрический заряд его равны 0. Фотон имеет целочисленный спин и является бозоном.

ЛЕПТОНЫ. Этот класс частиц не участвует в сильном взаимодействии, но обладает электромагнитными, слабыми и гравитационными взаимодействиями. Лептоны имеют полуцелый спин и относятся к фермионам. Элементарным частицам, входящим в эту группу, приписывается некоторая характеристика, называемая лептонным зарядом. Лептонный заряд, в отличие от электрического, не является источником какого-либо взаимодействия, его роль пока полностью не выяснена. Значение лептонного заряда у лептонов L=1, у антилептонов L= -1, всœех остальных элементарных частиц L=0.

МЕЗОНЫ. Это нестабильные частицы, которым присуще сильное взаимодействие. Название ʼʼмезоныʼʼ означает ʼʼпромежуточныйʼʼ и обусловлено тем, что первоначально открытые мезоны имели массу большую, чем у электрона, но меньшую, чем у протона. Сегодня известны мезоны, массы которых больше массы протонов. Все мезоны имеют целый спин и, следовательно являются бозонами.

БАРИОНЫ. В данный класс входит группа тяжелых элементарных частиц с полуцелым спином (фермионы) и массой, не меньшей массы протона. Единственным стабильным барионом является протон, нейтрон стабилен лишь внутри ядра. Для барионов характерны 4 вида взаимодействия. В любых ядерных реакциях и взаимодействиях их общее число остается неизменным.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ. - понятие и виды. Классификация и особенности категории "ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ." 2017, 2018.