Как развить устный счет у взрослого. Эффективный счёт в уме или разминка для мозга

] От составителя

В настоящее время в продаже нет
 руководств, содержащих наставления к
 быстрому выполнению счетных операций
 в уме. Мы сочли поэтому полезным собрать в краткой брошюре наиболее простые и легко усваиваемые приемы быстрого устного счета. Они рассчитаны на
 средние способности и имеют в виду не
 публичные выступления на эстраде, а
 потребности повседневной жизни. Пользующиеся книжечкой должны помнить, что успешное овладение ее указаниями
 предполагает не механическое, а вполне
 сознательное распоряжение приемами
 и, кроме того, более или менее продолжительную тренировку. Зато, усвоив
 рекомендуемые приемы, можно выполнять быстрые расчеты в уме с безошибочностью письменных вычислений.

Отв. редактор В. А. Камский . Техн. ред. А. Я. Барвиш 4-я тип. Лениздата им. Григорьева 4021

Умножение на однозначное число

§ 1. Чтобы устно умножить число на
 однозначный множитель (например, 27 × 8 ),
 выполняют действие, начиная с умножения
 не единиц, как при письменном умножении, а иначе: умножают сначала десятки множимого (20 × 8 = 160 ), затем единицы
 (7 × 8 = 56 ) и оба результата складывают.

Еще примеры:

34 × 7 = 30 × 7 + 4 × 7 = 210 + 28 = 238

47 × 6 = 40 × 6 + 7 × 6 = 240 + 42 = 282


§ 2. Полезно знать на память таблицу
 умножения до 19 × 9 :

2 3 4 5 6 7 8 9
11 22 33 44 55 66 77 88 99
12 24 36 48 60 72 84 96 108
13 26 39 52 65 78 91 104 117
14 28 42 56 70 84 98 112 126
15 30 45 60 75 90 105 120 135
16 32 48 64 80 96 112 128 144
17 34 51 68 85 102 119 136 153
18 36 54 72 90 108 126 144 162
19 38 57 76 95 114 133 152 171

Зная эту таблицу, можно умножение
 например, 147 × 8 выполнить в уме так:


147 × 8 = 140 × 8 + 7 × 8 = 1120 + 56 = 1176


§ 3. Когда одно из умножаемых чисел
 разлагается на однозначные множители,
 удобно бывает последовательно умножать
 на эти множители. Например:

225 × 6 = 225 × 2 × 3 = 450 × 3 = 1350 Умножение на двузначное число

§ 4. Умножение на двузначное число
 стараются облегчить для устного выполнения, приводя это действие к более привычному умножению на однозначное число.

Когда множимое однозначное, мысленно переставляют множители и выполняют
 действие, как указано в § 1. Например:

6 × 28 = 28 × 6 = 120 + 48 = 168

§ 5. Если оба множителя двузначные,
 мысленно разбивают один из них на десятки и единицы. Например:

29 × 12 = 29 × 10 + 29 × 2 = 290 + 58 = 348 41 × 16 = 41 × 10 + 41 × 6 = 410 + 246 = 656 (или 41 × 16 = 16 × 41 = 16 × 40 + 16 =
 640 + 16 = 656 )

Разбивать на десятки и единицы выгоднее тот множитель, в котором они выражены меньшими числами.

§ 6. Если множимое или множитель
 легко разложить в уме на однозначные
 числа (напр., 14 = 2 × 7 ), то пользуются
 этим, чтобы уменьшить один из множителей, увеличив другой во столько же раз
 (ср. § 3). Например:

45 × 14 = 90 × 7 = 630 Умножение на 4 и на 8

§ 7. Чтобы устно умножить число на
 4, его дважды удваивают. Например:

112 × 4 = 224 × 2 = 448
 335 × 4 = 670 × 2 = 1340

§ 8. Чтобы устно умножить число на
 8, его трижды удваивают. Например:

217 × 8 = 434 × 4 = 868 × 2 = 1736

(Еще удобнее: 217 × 8 = 200 × 8 +
 17 × 8 = 1600 × 13 = 1736 ).

Деление на 4 и на 8

§ 9. Чтобы устно разделить число на
 4, его дважды делят пополам. Например:

76: 4 = 38: 2 = 19
 236: 4 = 118: 2 = 59

§ 10. Чтобы устно разделить число на
 8, его трижды делят пополам. Например:

464: 8 = 232: 4 = 116: 2 = 58
 516: 8 = 258: 4 = 129: 2 = 64 1 / 2 Умножение на 5 и на 25

§ 11. Чтобы устно умножить число на
 5, умножают его на 10 / 2 , т. е. приписывают к числу ноль и делят пополам. Например:

74 × 5 = 740: 2 = 370
 243 × 5 = 2430: 2 = 1215

При умножении на 5 числа четного
 удобнее сначала делить пополам и к полученному приписать ноль. Например:

74 × 5 = 74 / 2 × 10 = 370

§ 12. Чтобы устно умножить число на 25, умножают его на 100 / 4 , т. е. - если число кратно 4-х - делят на 4 и к частному приписывают два ноля. Например:

72 × 25 = 72 / 4 × 100 = 1800

Если же число при делении на 4 дает
 остаток, то

при приписывают
остатке: к частному
1 25
2 50
3 75

Основание приема ясно из того, что


100: 4 = 25;200: 4 = 50;300: 4 = 75 Умножение на 1 1 / 2 , на 1 1 / 4 , на 2 1 / 2 , на 3 / 4

§ 13. Чтобы устно умножить число на
 1 1 / 2 прибавляют к множимому его половину. Например:

34 × 1 1 / 2 = 34 + 17 = 51
 23 × 1 1 / 2 = 23 + 11 1 / 2 = 34 1 / 2 (или 34,5)

§ 14. Чтобы устно умножить число на
 1 1 / 4 , прибавляют к множимому его четверть. Например:

48 × 1 1 / 4 = 48 + 12 = 60
 58 × 1 1 / 4 = 58 + 14 1 / 2 = 72 1 / 2 или (72,5)

§ 15. Чтобы устно умножить число на
 2 1 / 2 , к удвоенному числу прибавляют половину множимого. Например:

18 × 2 1 / 2 = 36 + 9 = 45
 39 × 2 1 / 2 = 78 + 19 1 / 2 = 97 1 / 2 (или 97,5)


Другой способ состоит в умножении
 на 5 и делении пополам:

18 × 2 1 / 2 = 90: 2 = 45

§ 16. Чтобы устно умножить число на
 3 / 4 (т. е. чтобы найти 3 / 4 этого числа),
 умножают число на 1 1 / 2 и делят пополам.
 Например:

30 × 3 / 4 = 30 + 15 / 2 = 22 1 / 2 (или 22,5) Видоизменение способа состоит в том, что
 от множимого отнимают его четверть или
 к половине множимого прибавляют половину этой половины. Умножение на 15, на 125, на 75

§ 17. Умножение на 15 заменяют умножением на 10 и на 1 1 / 2 (потому что
 10 × 1 1 / 2 = 15 ). Например:

18 × 15 = 18 × 1 1 / 2 × 10 = 270
 45 × 15 = 450 + 225 = 675

§ 18. Умножение на 125 заменяют умножением на 100 и на 1 1 / 4 (потому что
 100 × 1 1 / 4 = 125 ). Например:

26 × 125 = 26 × 100 × 1 1 / 4 = 2600 + 650 = 3250 47 × 125 = 47 × 100 × 1 1 / 4 = 4700 + 4700 / 4 = 4700 + 1175 = 5875

§ 19. Умножение на 75 заменяют умножением на 100 и на 3 / 4 (потому что
 100 × 3 / 4 = 75 ). Например:

18 × 75 = 18 × 100 × 3 / 4 = 1800 × 3 / 4 = 1800 + 900 / 2 = 1350

‎ Примечание . Некоторые из
 приведенных примеров удобно выполняются также приемом § 6:

18 × 15 = 90 × 3 = 270
 26 × 125 = 130 × 25 = 3250 Умножение на 9 и на 11

§ 20. Чтобы устно умножить число на
 9, приписывают к нему ноль и отнимают
 множимое. Например:

62 × 9 = 620 - 62 = 600 - 42 = 558
 73 × 9 = 730 - 73 = 700 - 43 = 657

§ 21. Чтобы устно умножить число на
 11, приписывают к нему ноль и прибавляют множимое. Например:

87 × 11 = 870 + 87 = 957 Деление на 5, на 1 1 / 2 , на 15

§ 22. Чтобы устно разделить число на
 5, отделяют запятой в удвоенном числе последнюю цифру. Например:

68: 5 = 136 / 10 = 13,6
 237: 5 = 474 / 10 = 47,4 36: 1 1 / 2 = 72: 3 = 24
 53: 1 1 / 2 = 106: 3 = 35 1 / 3 240: 15 = 480: 30 = 48: 3 = 16
 462: 15 = 924: 30 = 3024 / 30 = 30 4 / 5 = 30,8
 (или 924: 30 = 308: 10 = 30,8 ) Возвышение в квадрат

§ 25. Чтобы возвысить в квадрат число, оканчивающееся цифрой 5 (например
 85), умножают число десятков (8) на него
 же плюс единица (8 × 9 = 72 ) и приписывают 25 (в нашем примере получается 7225).
 Еще примеры:

25 2 ; 2 × 3 = 6; 625

 45 2 ; 4 × 5 = 20; 2025

 145 2 ; 14 × 15 = 210; 21025


Прием этот вытекает из формулы


(10x + 5) 2 = 100x 2 + 100x + 25 = 100x (x + 1) + 25


§ 26. Сейчас указанный прием приложим и к десятичным дробям, оканчивающимся цифрой 5:

8,5 2 = 72,2514,5 2 = 210,25

 0,35 2 = 0,1225 , и т. п.

§27. Так как 0,5 = 1 / 2 , а 0,25 = 1 / 4 , то
 приемом §25 можно пользоваться также и
 для возвышения в квадрат чисел, оканчивающихся дробью 1 / 2:

(8 1 / 2) 2 = 72 1 / 4 (14 1 / 2) 2 = 210 1 / 4 и т. п.

§ 28. При устном возвышении в квадрат часто удобно бывает пользоваться формулой (а ± b ) 2 = а 2 + b 2 ± 2аb . Например:


41 2 = 40 2 + 1 + 2 × 40 = 1601 + 80 = 1681
 69 2 = 70 2 + 1 - 2 × 70 = 4901 - 140 = 4761
 36 2 = (35 + 1) 2 = 1225 + 1 + 2 × 35 = 1296
 Прием удобен для чисел, оканчивающихся на 1, 4, 6 и 9.
Вычисления по формуле (а + b ) (а - b ) = а 2 - b 2

§ 29. Пусть требуется выполнить устно умножение

52 × 48

‎ Мысленно представляем эти множители в
 виде (50 + 2) × (50 - 2) и применяем приведенную в заголовке
 формулу:

(50 + 2) × (50 - 2) = 50 2 - 2 2 = 2496

‎ Подобным же образом поступают во всех
 вообще случаях, когда один множитель
 удобно представить в виде суммы двух
 чисел, другой - в виде разности тех же
 чисел:

69 × 71 = (70 - 1) × (70 + 1) = 4899
 33 × 27 = (30 + 3) × (30 - 3) = 891
 53 × 57 = (55 - 2) × (55 + 2) = 3021
 84 × 86 = (85 - 1) × (85 + 1) = 7224

§ 30. Указанным сейчас приемом удобно
 пользоваться и для вычислений следующего
 рода:

7 1 / 2 × 6 1 / 2 = (7 + 1 / 2) × (7 - 1 / 2) = 48 3 / 4 11 3 / 4 × 12 1 / 4 = (12 - 1 / 4) × (12 + 1 / 4) = 14315 / 16 Полезно запомнить:


‎ Запомнив это, легко выполнять устно умножения следующего рода:

77 × 13 = 1001 91 × 11 = 1001
77 × 26 = 2002 91 × 22 = 2002
77 × 39 = 3003 91 × 33 = 3003

и т. д. и т. д.
143 × 7 = 1001
 143 × 14 = 2002
 143 × 21 = 3003
 и т. д. В нашей книжечке указаны только
 простейшие, наиболее удобоприменимые
 способы устного выполнения действий
 умножения, деления и возвышения в квадрат. Практикуясь в сознательном пользовании ими, вдумчивый читатель выработает для себя ряд еще и других приемов,
 облегчающих вычислительную работу.
УКАЗАТЕЛЬ Умножение

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10 . В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10 ». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10 , а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6 . Чтобы из 8 получить 10 , не хватает 2 . Затем к 10 останется прибавить 4=6-2 . В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728 . Число 356 можно представить как 300+50+6 . Аналогично, 728 будет иметь вид 700+20+8 . Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321 ? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1 .

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4 , это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения . Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6 . Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32 . Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57 . Это значит, что на нужно взять число «79 » 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50 , а потом – 79 на 7 .

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11 , две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число - результат умножения исходного числа на 11 .

Проверим и умножим 54 на 11 .

  • 5+4=9
  • 54*11=594

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами - эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5 .

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n , то следующей за ней по иерархии цифрой будет n+1 . Результат заканчивается на квадрат последней цифры, то есть квадрат 5 .

Проверим! Возведем в квадрат число 75 .

  • 7*8=56
  • 5*5=25
  • 75*75=5625

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144 , которое нужно разделить на 8 . Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600 . Представим пример в виде:

6144:8=(5600+544):8=700+544:8

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656 . По правилу, последняя цифра в получившемся числе будет 0 , так как 5*6=30 . Действительно, 1325*656=869200 .

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56 ?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424 . Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70 . Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4 . Согласно таблице умножения, нам подходят результаты 4 и 9 . Логично предположить, что результатом деления может быть либо число 74 , либо 79 . Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79 , второй вариант обязательно оказался бы верным.

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Библиографическое описание: Владимиров А. И., Михайлова В. В., Шмелева С. П. Интересные способы быстрого счета // Юный ученый. — 2016. — №6.1. — С. 15-17..03.2019).





Введение

Устный счет – гимнастика для ума. Счет в уме является самым древним способом вычисления. Освоение вычислительных навыков развивает память и помогает усваивать предметы естественно-математического цикла.

Существует много приемов упрощения арифметических действий. Знание упрощенных приемов вычисления особенно важно в тех случаях, когда вычисляющий не имеет в своем распоряжении таблиц и калькулятора.

Мы хотим остановиться на способах сложения, вычитания, умножения, деления, для производства которых достаточно устного счета или применения ручки и бумаги.

Мотивацией для выбора темы послужило желание продолжения формирования вычислительных навыков, умения быстро и чётко находить результат математических действий.

Правила и приёмы вычислений не зависят от того, выполняются они письменно или устно. Однако владение навыками устных вычислений представляет большую ценность не потому, что в быту ими пользуются чаще, чем письменными выкладками. Это важно ещё и потому, что они ускоряют письменные вычисления, приобретают опыт рациональных вычислений, дают выигрыш в вычислительной работе.

На уроках математики приходится, много делать устных вычислений и когда учитель показал нам приём быстрого умножения на числа 11, у нас возникла идея, а существуют ли ещё приёмы быстрого вычисления. Мы поставили перед собой задачу, найти и опробовать другие приёмы быстрого вычисления.

б) чтобы хорошо учиться в школе; (16%)

в) чтобы быстро решать; (16%)

г) чтобы быть грамотным; (52%)

2. Перечислите, при изучении, каких школьных предметов тебе понадобится правильно считать ?

а) математика; (80%)

б) физика; (15%)

в) химия; (5%)

г) технология;

д) музыка;

3. Знаешь ли ты приемы быстрого счета?

а) да, много;

б) да, несколько (85%);

в) нет, не знаю(15%).

4. Применяешь ли ты при вычислениях приемы быстрого счета?

б) нет (85%)

5. Хотели бы вы узнать приемы быстрого счета, чтобы быстро считать?

б) нет (8%).

Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро, считать в уме можно только при большом желании и систематической тренировке в решении задач.

А ведь приёмы быстрого устного счёта известны давно. Великолепные способности к устному счёту таких блестящих математиков, как Гаусс, фон Нейман, Эйлер или Валлис, вызывают настоящий восторг. Об этом много написано. Мы хотим рассказать и показать некоторые известные вычислительные секреты. И тогда перед вами откроется совсем другая математика. Живая, полезная и понятная.

1.Способы быстрого умножения

1. СЧЁТ НА ПАЛЬЦАХ

Способ быстрого умножения чисел в пределах первого десятка на 9.

Допустим, нам нужно умножить 7 на 9.

Повернём руки ладонями к себе и загнём седьмой палец (начиная считать от большого пальца слева).

Число пальцев слева от загнутого будет равно десяткам, а справа – единицам искомого произведения.

Рис. 1. Счёт на пальцах

2. УМНОЖЕНИЕ ЧИСЕЛ ОТ 10 ДО 20

Можно очень просто умножать такие числа.

К одному из чисел надо прибавить количество единиц другого, умножить на 10 и прибавить произведение единиц чисел.

Пример 1. 16∙18=(16+8) ∙ 10+6 ∙ 8=288, или

Пример 2. 17 ∙ 17=(17+7) ∙ 10+7 ∙ 7=289.

Задание: Умножьте быстро 19 ∙ 13. Ответ 19 ∙13=(19+3) ∙10 +9 ∙3=247.

3. УМНОЖЕНИЕ НА 11

Чтобы двузначное число, сумма цифр которого не превышает 10, умножить на 11, надо цифры этого числа раздвинуть и поставить между ними сумму этих цифр.

72 ∙ 11 = 7 (7 + 2) 2 = 792;

35 ∙ 11 = 3 (3 + 5) 5 = 385.

Чтобы умножить на 11 двузначное число, сумма цифр которого 10 или больше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить единицу, а вторую и последнюю (третью) оставить без изменения.

Пример.

94 ∙ 11 = 9 (9 + 4) 4 = 9 (13) 4 = (9 + 1) 34 = 1034.

Задание: Умножьте быстро 54 ∙ 11 (594)

Задание: Умножьте быстро 67∙ 11 (737)

4. УМНОЖЕНИЕ НА 22, 33, ..., 99

Чтобы двузначное число умножить на 22, 33, ..., 99, надо этот множитель представить в виде произведения однозначного числа (от 2 до 9) на 11, то есть 44 = 4 11; 55 = 5 ∙ 11 и т.д. Затем произведение первых чисел умножить на 11.

Пример 1. 24 ∙ 22 = 24 ∙ 2 ∙ 11 = 48 ∙ 11 = 528

Пример 2. 23 ∙ 33 = 23 ∙ 3 ∙ 11= 69 ∙ 11 = 759

Задание: Умножьте 18∙ 44

5. УМНОЖЕНИЕ НА 5, НА 50, НА 25, НА 125

При умножении на эти числа можно воспользоваться следующими выражениями:

a ∙ 5=a ∙ 10:2 a ∙ 50=a ∙ 100:2

a ∙ 25=a ∙ 100:4 а ∙ 125=а ∙ 1000:8

Пример1. 17 ∙ 5=17 ∙ 10:2=170:2=85

Пример 2. 43 ∙ 50=43 ∙ 100:2=4300:2=2150

Пример 3. 27 ∙ 25=27 ∙ 100:4=2700:4=675

Пример 4. 96 ∙ 125=96:8 ∙ 1000=12 ∙ 1000=12000

Задание: умножьте 824∙25

Задание: умножьте 348∙50

&2. Способы быстрого деления

1. ДЕЛЕНИЕ НА 5, НА 50, НА 25

При делении на 5, на 50, на 25 можно воспользоваться следующими выражениями:

a:5= a ∙ 2:10 a:50=a ∙ 2:100

a:25=a ∙ 4:100

35:5=35 ∙ 2:10=70:10=7

3750:50=3750 ∙ 2:100=7500:100=75

6400:25=6400 ∙ 4:100=25600:100=256

&3. Способы быстрого сложения и вычитания натуральных чисел.

Если одно из слагаемых увеличить на несколько единиц, то из полученной суммы надо вычесть столько же единиц.

Пример. 785+963=785+(963+7)-7=785+970-7= 1748

Если одно из слагаемых увеличить на несколько единиц, а второе уменьшить на столько же единиц, то сумма не изменится.

Пример. 762+639=(762+8)+(639-8)=770 + 631=1401

Если вычитаемое уменьшить на несколько единиц и уменьшаемое увеличить на столько же единиц, то разность не изменится.

Пример. 529-435=(529-5)-(435+5)=524-440=84

Заключение

Существуют способы быстрого сложения, вычитания, умножения, деления, возведения в степень. Мы рассмотрели лишь немногие способы быстрого счета.

Все рассмотренные нами методы устного вычисления говорят о многолетнем интересе ученых и простых людей к игре с цифрами. Используя некоторые из этих методов на уроках или дома можно развить скорость вычислений, добиться успехов в изучении всех школьных предметов.

Умножение без калькулятора – тренировка памяти и математического мышления. Вычислительная техника совершенствуется и по сей день, но любая машина делает то, что в нее закладывают люди, а мы узнали некоторые приемы устного счета, которые помогут нам в жизни.

Нам было интересно работать над проектом. Пока мы только изучали и анализировали уже известные способы быстрого счета.

Но кто знает, возможно, в будущем мы сами сможем открыть новые способы быстрых вычислений.

Литература:

  1. Арутюнян Е., Левитас Г. Занимательная математика.- М.: АСТ – ПРЕСС, 1999. – 368 с.
  2. Гарднер М. Математические чудеса и тайны. – М., 1978.
  3. Глейзер Г.И. История математики в школе. – М.,1981.
  4. «Первое сентября» Математика №3(15), 2007.
  5. Татарченко Т.Д. Способы быстрого счета на занятиях кружка, «Математика в школе», 2008, №7, стр.68.
  6. Устный счет / Сост. П.М.Камаев. – М.: Чистые пруды, 2007- Библиотечка «Первого сентября», серия «Математика». Вып. 3(15).
  7. http://portfolio.1september.ru/subject.php

ВВЕДЕНИЕ

Во все времена математика была и остается одним из основных предметов в школе, потому что математические знания необходимы всем людям. Не каждый школьник, обучаясь в школе, знает, какую профессию он выберет в будущем, но каждый понимает, что математика необходима для решения многих жизненных задач: расчеты в магазине, оплата за коммунальные услуги, расчет семейного бюджета и т.д. Кроме того, всем школьникам необходимо сдавать экзамены в 9-м классе и в 11-м классе, а для этого, обучаясь с 1-го класса, необходимо качественно осваивать математику и прежде всего, нужно научиться считать.

Можно ли представить себе мир без чисел? Без чисел ни покупки не сделаешь, ни времени не узнаешь, ни номера телефона не наберёшь. А космические корабли, лазеры и все другие технические достижения?! Они были бы попросту невозможны, если бы не наука о числах.

Две стихии господствуют в математике – числа и фигуры с их бесконечным многообразием свойств и взаимосвязей. В моей работе предпочтение отдано стихии чисел и действий с ними.

Сейчас, на этапе стремительного развития информатики и вычислительной техники, современные школьники не хотят утруждать себя счетом в уме. Поэтому я решил показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.

Цель: изучить приемы быстрого счета, показать необходимость их применения для упрощения вычислений.

В соответствии с поставленной целью были определены задачи:

  1. Исследовать, применяют ли школьники приемы быстрого счета.
  2. Изучить приемы быстрого счета, которые можно использовать, упрощая вычисления.
  3. Составить памятку для учащихся 5-6 классов для применения приемов быстрого счета.

Объект исследования: приемы быстрого счета.

Предмет исследования : процесс вычислений.

Гипотеза исследования: если показать, что применение приемов быстрого счета, облегчает вычисления, то можно добиться того, что повысится вычислительная культура учащихся, и им будет легче решать практические задачи.

При выполнении работы были использованы следующие приемы и методы : опрос (анкетирование), анализ (статистическая обработка данных), работа с источниками информации, практическая работа, наблюдения.

Данная работа относится к прикладным исследованиям , т.к. в ней показывается роль применения приемов быстрого счета для практической деятельности.

При работе над докладом я пользовался следующими методами:

  1. поисковый метод с использованием научной и учебной литература, а также поиск необходимой информации в сети Интернет;
  2. практический метод выполнения вычислений с применением нестандартных алгоритмов счета;
  3. анализ полученных в ходе исследования данных.

Актуальность моего исследования состоит в том, что в наше время все чаще на помощь ученикам приходят калькуляторы, и все большее количество учеников не может считать устно. А ведь изучение математики развивает логическое мышление, память, гибкость ума, приучает человека к точности, к умению видеть главное, сообщает необходимые сведения для понимания сложных задач, возникающих в различных областях деятельности современного человека. Поэтому в своей работе я хочу показать, как можно считать быстро и правильно и что процесс выполнения действий может быть не только полезным, но и интересным занятием. Именно использование нестандартных приемов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.

За простыми действиями сложения, вычитания, умножения и деления скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали. Захотелось узнать эти и другие способы вычислений, а также сравнить их с сегодняшними.

Умеете ли вы считать? Вопрос, пожалуй, даже обидный для человека старше трехлетнего возраста. Кто не умеет считать? Каждый ответит, что для этого, особого искусства не требуется. И будет прав. Но вопрос – как считать? Можно считать на калькуляторе, можно считать столбиком в тетради, а можно считать устно, используя приемы быстрого счета. Я очень быстро считаю устно, практически никогда не решаю столбиком, письменно, все потому, что знаю и применяю различные приемы быстрого счета. Из моих одноклассников мало кто умеет считать быстро устно и мне захотелось выяснить, а знают ли они приемы быстрого счета, если нет, то помочь им освоить эти приемы, с этой целью составить для них памятку с приемами быстрого счета.

Для того чтобы выяснить, знают ли современные школьники другие способы выполнения арифметических действий, кроме умножения, сложения, вычитания столбиком и деления «уголком» и хотели бы узнать новые способы, был проведен тестовый опрос.

Для начала, я провел анкетирование в 6-х классах нашей школы. Задавал ребятам простые вопросы. Зачем вообще нужно уметь считать? При изучении каких школьных предметов требуется правильный счет? Знают ли они приемы быстрого счета? Хотели бы научиться быстро считать устно? (Приложение I).

В опросе приняли участие 61 человек. Проанализировав результаты, я сделал вывод, что большинство учеников считает, что умение считать пригодится в жизни и необходимо в школе, особенно при изучении математики, физики, химии, информатики и технологии. Приемы быстрого счета знают несколько учеников и почти все хотели бы научиться быстро считать. (Результаты анкетирования отражены в диаграммах) (Приложение II).

Проведя статистическую обработку данных, я сделал вывод, что не все учащиеся знают приемы быстрого счета, поэтому необходимо сделать для учеников 5-6-х классов памятки с приемами быстрого счета, чтобы использовать их при выполнении вычислений.

Результаты анкетирования:

Вопрос

5 класс

6 классы

Всего

да

нет

не знаю

да

нет

не знаю

А хотели бы узнать?

Сводная таблица анкетирования:

Вопрос

5, 6 классы

да

нет

не знаю

Нужно ли уметь выполнять арифметические действия с натуральными числами современному человеку?

Умеете ли вы умножать, складывать, вычитать числа столбиком, делить «уголком»?

Знаете ли вы другие способы выполнения арифметических действий?

А хотели бы узнать?

По результатам опроса можно сделать вывод, что в большинстве случаев современные школьники не знают других способов выполнения действий кроме таких как умножения, сложения, вычитания столбиком и деления «уголком», так как редко обращаются к материалу, находящемуся за пределами школьной программы.

Глава I. ИСТОРИЯ СЧЁТА

1. КАК ВОЗНИКЛИ ЧИСЛА

Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.

Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.
И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки – по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось сделать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.

Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней. Обычно таких числительных было мало. Например, у племени реки Муррей в Австралии было два простых числительных: энэа (1) и петчевал (2). Другие числа они выражали составными числительными: 3= «петчевал–энэа», 4 «петчевал–петчевал» и т. д. Ещё одно австралийское племя – камилороев имело простые числительные мал (1), булан (2), гулиба (3) . И здесь другие числа получались сложением меньших: 4=«булан–булан», 5=«булан–гулиба», 6=«гулиба–гулиба» и т.д.

У многих народов название числа зависело от подсчитываемых предметов. Если жители островов Фиджи считали лодки, то число 10 называли «боло»; если они считали кокосовые орехи, то число 10 называли «каро». Точно так же поступали живущие на Сахалине у берегах Амура нивхи. Ещё в XIX веке одно и то же число они называли разными словами, если считали людей, рыб, лодки, сети, звёзды, палки.

Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.

С развитием производства и торгового обмена люди стали лучше понимать, что общего у трёх лодок и трёх топоров, десяти стрел и десяти орехов. Племена часто вели обмен «предмет за предмет»; к примеру, обменивали 5 съедобных кореньев на 5 рыб. Становилось ясно, что 5 одно и то же и для кореньев, и для рыб; значит, и называть его можно одним словом.

Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.

До сих пор я рассказывал об устном счёте. А как записывали числа? Поначалу, ещё до возникновения письменности, использовали зарубки на палках, насечки на костях, узелки на верёвках. Найденная волчья кость в Дольни – Вестонице (Чехословакия), имела 55 насечек, сделанных более 25 000 лет назад.

Когда появилась письменность, появились и цифры для записи чисел. Сначала цифры напоминали зарубки на палках: в Египте и Вавилоне, в Этрурии и Финики, в Индии и Китае небольшие числа записывали палочками или чёрточками. Например, число 5 записывали пятью палочками. Индейцы ацтеки и майя вместо палочек использовали точки. Затем появились специальные знаки для некоторых чисел, таких, как 5 и 10 .

В то время почти все нумерации были не позиционными, а похожими на римскую нумерацию. Лишь одна вавилонская шестидесятеричная нумерация была позиционной. Но и в ней долго не было нуля, а также запятой, отделяющей целую часть от дробной. Поэтому одна и та же цифра могла означать и 1, и 60, и 3600. Угадывать значение числа приходилось по смыслу задачи.

За несколько столетий до новой эры изобрели новый способ записи чисел, при котором цифрами служили буквы обычного алфавита. Первые 9 букв обозначали числа десятки 10, 20,…, 90, а ещё 9 букв обозначали сотни. Такой алфавитной нумерацией пользовались до 17 в. Чтобы отличить «настоящие» буквы от чисел, над буквами–числами ставили чёрточку (на Руси эта чёрточка называлась «титло»).

Во всех этих нумерациях было очень трудно выполнить арифметические действия. Поэтому изобретение в VI веке индийцами десятичной позиционной нумерации по праву считается одним из крупнейших достижений человечества. Индийская нумерация и индийские цифры стали известны в Европе от арабов, и обычно их называют арабскими.

При записи дробей ещё долгое время целую часть записывали в новой десятичной нумерации, а дробную – в шестидесятеричной. Но в начале XV в. самаркандский математик и астроном аль–Каши стал употреблять в вычислениях десятичные дроби.

Числа, с которыми мы работаем с положительными и отрицательными числами. Но, оказывается, что это не все числа, которые используют в математике и других науках. И узнать о них можно не дожидаясь старшей школы, а гораздо раньше, если изучать историю возникновения чисел в математике.

Глава II. СТАРИННЫЕ СПОСОБЫ ВЫЧИСЛЕНИЯ

2.1. РУССКИЙ КРЕСТЬЯНСКИЙ СПОСОБ УМНОЖЕНИЯ

В России несколько веков назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название КРЕСТЬЯНСКИЙ (существует мнение, что он берет начало от египетского).

Пример: умножим 47 на 35,

  1. запишем числа на одной строчке, проведём между ними вертикальную черту;
  2. левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);
  3. деление заканчивается, когда слева появится единица;
  4. вычёркиваем те строчки, в которых стоят слева чётные числа; 35 + 70 + 140 + 280 + 1120 = 1645
  5. далее оставшиеся справа числа складываем – это результат.

2.2. МЕТОД «РЕШЕТКИ»

Выдающийся арабский математик и астроном Абу Абдалах Мухаммед Бен Мусса аль – Хорезми жил и работал в Багдаде. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.

Сведений о жизни и деятельности Мухаммеда аль – Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.

1

3

0

1

В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «МЕТОДОМ РЕШЁТКИ» . Этот метод даже проще, чем применяемый сегодня.

Пример: умножим 25 и 63.

Начертим таблицу, в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать по стрелке (вниз и вправо).

Мною рассмотрен простой пример, однако, этим способом можно умножать любые многозначные числа.

Рассмотрю еще один пример: перемножим 987 и 12:

  1. рисуем прямоугольник 3 на 2 (по количеству десятичных знаков у каждого множителя);
  2. затем квадратные клетки делим по диагонали;
  3. вверху таблицы записываем число 987;
  4. слева таблицы число 12;
  5. теперь в каждый квадратик впишем произведение цифр, расположенных в одной строчке и в одном столбце с этим квадратиком, десятки ниже диагонали, единицы выше;
  6. после заполнения всех треугольников, цифры в них складывают вдоль каждой диагонали справой стороны;
  7. результат читаем по стрелке.

Этот алгоритм умножения двух натуральных чисел был распространен в средние века на Востоке и Италии.

Неудобство этого способа мне хотелось бы отметить в трудоемкости подготовки прямоугольной таблицы, хотя сам процесс вычисления интересен и заполнение таблицы напоминает игру.

2.3. УМНОЖЕНИЕ НА ПАЛЬЦАХ

Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название ПАЛЬЦЕВОГО СЧЕТА ).

Умножали на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, насколько первый множитель превосходил число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. После этого брали столько десятков, сколько вытянуто пальцев на обеих руках, и прибавляли к этому числу произведение загнутых пальцев на первой и второй руке.

Пример: 8 ∙ 9 = 72

Позже пальцевой счёт усовершенствовали – научились показывать с помощь пальцев числа до 10000.

Движение пальца – это еще один из способов помочь памяти: с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1, второй за ним обозначим цифрой 2, затем 3, 4… до десятого пальца, который означает 10. Если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается девять; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения (убедитесь в этом самостоятельно).

Итак, рассмотренные нами старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.

Однако, он достаточно быстр и наиболее удобен.

Глава III. УСТНЫЙ СЧЕТ – ГИМНАСТИКА УМА

3.1. РАЗЛИЧНЫЕ СПОСОБЫ СЛОЖЕНИЯ И ВЫЧИТАНИЯ

СЛОЖЕНИЕ

Основное правило для выполнения сложения в уме звучит так:

Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например:

56+8=56+10-2=64;

65+9=65+10-1=74.

СЛОЖЕНИЕ В УМЕ ДВУЗНАЧНЫХ ЧИСЕЛ

Если цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например:

34+48=34+50-2=82;

27+31=27+30+1=58.

СЛОЖЕНИЕ ТРЕХЗНАЧНЫХ ЧИСЕЛ

Складываем слева на право, то есть сначала сотни, потом десятки, а затем единицы. Например:

359+523= 300+500+50+20+9+3=882;

456+298=400+200+50+90+6+8=754.

ВЫЧИТАНИЕ

Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.

56-9=56-10+1=47;

436-87=436-100+13=349.

ВЫЧИТАНИЕ ЧИСЛА МЕНЬШЕ 100 ИЗ ЧИСЛА БОЛЬШЕ 100

Если вычитаемое меньше 100, а уменьшаемое больше 100, но меньше 200, есть простой способ вычислить разность в уме. 134-76=58

76 на 24меньше 100. 134 на 34 больше 100. Прибавим 24 к 34 и получим ответ: 58.

152-88=64

88 на 12 меньше 100,а 152 больше 100 на 52, значит

152-88=12+52=64

3.2. РАЗЛИЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ И ДЕЛЕНИЯ

Изучив литературу по данной теме, мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы умножения и деления, которые просты в понимании и применении для любого ученика. Эти приемы я и включил в памятку (Приложение III), которая будет полезна для учеников 5-6-х классов.

  1. Умножение и деление числа на 4.

Чтобы умножить число на 4, нужно его дважды умножить на 2.

Например:

26·4=(26·2)·2=52·2=104;

417·4=(417·2)·2=834·2=1668.

Чтобы разделить число на 4, нужно его дважды разделить на 2.

Например:

324:4=(324:2):2=162:2=81.

  1. Умножение и деление числа на 5.

Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2.

Например:

236·5=(236·10):2=2360:2=1180.

Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру.

Например:

236:5=(236·2):10=472:10=47,2.

  1. Умножение числа на 1,5.

Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.

Например: 34·1,5=34+17=51;

146·1,5=146+73=219.

  1. Умножение числа на 9.

Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число.

Например: 72·9=720-72=648.

  1. Умножение на 25 числа, делящегося на 4.

Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100.

Например: 124·25=(124:4)·100=31·100=3100.

  1. Умножение двузначного числа на 11

При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре).

Например:
23·11=253, т.к. 2+3=5, поэтому между 2 и 3 ставим цифру 5;
57·11=627, т.к. 5+7=12, цифру 2 ставим между 5 и 7, а к 5 прибавляем 1, вместо 5 пишем 6.

«Краешки сложи, в серединку положи» - эти слова помогут легко запомнить данный способ умножения на 11.

Такой способ подходит только для умножения двузначных чисел.

  1. Умножение двузначного числа на 101.

Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе.

Например:34·101 = 3434.

Поясним, 34·101 = 34·100+34·1=3400+34=3434.

  1. Возведение в квадрат двузначного числа, оканчивающегося на 5.

Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно цифру десятков умножить на цифру, большую на единицу, и к полученному произведению приписать справа число 25.
Например: 35 2 =1225, т.е. 3·4=12 и к 12 приписываем 25, получаем 1225.

  1. Возведение в квадрат двузначного числа, начинающегося на 5.

Для возведения в квадрат двузначного числа, начинающегося на пять, нужно прибавить к 25 вторую цифру числа и приписать справа квадрат второй цифры, причем если квадрат второй цифры – однозначное число, то перед ним надо приписать цифру 0.

Например:
52 2 = 2704, т.к. 25+2=28 и 2 2 =04;
58 2 = 3364, т.к. 25+8=33 и 8 2 =64.

3.3. ИГРЫ

Отгадывание полученного числа.

  1. Задумайте какое-нибудь число. Прибавьте к нему 11; умножьте полученную сумму на 2; от этого произведения отнимите 20; умножьте полученную разность на 5 и от нового произведения отнимите число, в 10 раз больше задуманного вами числа. Я отгадываю: вы получили 10. Верно?
  2. Задумайте число. Утрой его. Вычти из полученного 1. Полученное умножьте на 5. К полученному прибавьте 20. Разделите полученное на 15. Из полученного результата вычтите задуманное. У вас получилось 1.
  3. Задумайте число. Умножьте его на 6. Вычтите 3. Умножьте на 2. Прибавьте 26. Вычтите удвоенное задуманное. Разделите на 10. Вычтите задуманное. У вас получилось 2.
  4. Задумайте число. Утройте его. Вычтите 2. Умножьте на 5. Прибавьте 5. Разделите на 5. Прибавьте 1. Разделите на задуманное. У вас получилось 3.
  5. Задумайте число, удвойте его. Прибавьте 3. Умножьте на 4. Вычтите 12. Разделите на задуманное. У вас получилось 8.

Угадывание задуманных чисел.

  1. Предложите своим друзьям задумать любые числа. Пусть каждый прибавит к своему задуманному числу 5.
  2. Полученную сумму пусть умножит на 3.
  3. От произведения пусть отнимет 7.
  4. Из полученного результата пусть вычтет ещё 8.
  5. Листок с окончательным результатом пусть каждый отдаст вам. Глядя на листок, вы тут же говорите каждому, какое число он задумал.

(Чтобы угадать задуманное число, результат, написанный на бумажке или сказанный вам устно, разделить на 3).

ЗАКЛЮЧЕНИЕ

Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, «экономическую ситуацию» в стране, погоду на «завтра», описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в IV веке д.н.э. – Пифагора– «Всё есть число!».

Описывая старинные способы вычислений и современные приёмы быстрого счёта, я попытался показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.

Изучение старинных способов вычислений показало, что это арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения.

Современные способы вычислений просты и доступны всем.

При знакомстве с научной литературой обнаружил более быстрые и надежные способы вычислений.

Возможно, что с первого раза у многих не получится быстро, с ходу выполнять эти или другие подсчеты. Пусть сначала не получится использовать прием, показанный в работе. Не беда. Нужна постоянная вычислительная тренировка. Из урока в урок, из года в год. Она поможет приобрести полезные навыки устного счета.

Немецкого ученого Карла Гаусса называли королем математиков. Его математическое дарование проявилось уже в детстве. Однажды в школе (Гауссу было 10 лет) учитель предложил классу сложить все числа от 1 до 100. Пока он диктовал задание, у Гаусса уже был готов ответ. На его грифельной доске было написано: 101·50=5050. Как он вычислил? Очень просто – он применил прием быстрого счета, он складывал первое число с последним, второе с предпоследним и т.д. таких сумм всего 50 и каждая равна 101, поэтому он смог почти мгновенно дать правильный ответ.

1+2+…+50+51+...+99+100=(1+100)+(2+99)+…+(50+51)=101·50=5050. Этот пример, лучше всего показывает, что можно считать быстро и правильно практически устно всем школьникам, для этого всего лишь нужно знать приемы быстрого счета.

Результаты своей работы я оформил в памятку, которую предложу всем своим одноклассникам, также размещу её на школьном тематическом стенде «Это интересно!». Возможно, что с первого раза не у всех получится быстро, с ходу выполнять вычисления с применением этих приемов, даже если сначала не получится использовать прием, показанный в памятке, ничего страшного, просто нужна постоянная вычислительная тренировка. Она и поможет приобрести полезные навыки быстрого счета.

Проведя статистическую обработку данных, были получены следующие результаты:

  1. Уметь считать нужно, потому, что это пригодится в жизни, считают 93% учащихся, чтобы хорошо учиться в школе – 72%, чтобы быстро решать – 61%, чтобы быть грамотным – 34% и не обязательно уметь считать – всего 3%.
  2. Навыки хорошего счета необходимы при изучении математики, считают 100% учащихся, а также при изучении физики – 90%, химии – 80%, информатики – 44%, технологии – 36%.
  3. Приемы быстрого счета знают 16% (много приемов), 25% (несколько приемов), не знают приемов быстрого счета – 59% учащихся.
  4. Применяют приемы быстрого счета 21% учащихся, иногда применяют – 15%.
  5. Хотели бы узнать приемы быстрого счета 93% учащихся.

Выводы:

  1. Знание приемов быстрого счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума.
  2. В школьных учебниках практически нет приемов быстрого счета, поэтому результат данной работы – памятка для быстрого счета будет очень полезной для учащихся 5-6 классов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Ванцян А.Г. Математика: Учебник для 5 класса. - Самара: Издательский дом «Фёдоров», 1999г.
  2. Кордемский Б.А., Ахадов А.А. Удивительный мир чисел: Книга учащихся,- М. Просвещение, 1986г.
  3. Минских Е.М. «От игры к знаниям», М., «Просвещение», 1982г.
  4. Свечников А.А. Числа, фигуры, задачи. М., Просвещение, 1977г. Да Нет Не знаю https://accounts.google.com

Вы забыли деньги дома и коллега любезно согласился купить вам ланч. На обратном пути вы заглянули в магазин за перекусом, а там объявили суперакцию на любимые шоколадки. Вы не удержались и взяли 5 штук. Вы были так заняты покупками, что забыли про свой смартфон и не посчитали, сколько в итоге вы задолжали коллеге. Ситуация некрасивая. Куда проще было бы сразу всё сложить в уме. Но… кому это нужно, когда в каждом телефоне давно есть калькулятор!

Счёт в уме может быть таким же быстрым, как и на калькуляторе. Особенное, если дело касается бытовых вопросов. Главное, освоить приёмы быстрого счёта и периодически практиковать их. В материале приводим самые простые из них.

Разбивка задачи на части

Даже самые сложные арифметические задачи можно разбить на простые.

Пример: как вы посчитаете 15% скидки, если известна полная стоимость товара?

В этом случае имеет смысл разбить 15 на 10% и 5%. 10% отнять достаточно просто, а 5% - это половина от 10%.

Предположим, у нас есть товар за 900 рублей, 10% от него - 90 рублей, 5% - 45. Складываем: 90+45 = 135. Окончательная стоимость товара со скидкой 15%: 900 - 135 = 765 рублей.

Округление до целого

Этот приём подразумевает использование дополнения - числа, которое заполняет промежуток между данным числом и числом, которое, как правило, оканчивается на 00.

Например, дополнительным числом для 87 будет 13, так как их сумма даёт 100.

Пример 1234 - 678 кажется сложным. Округлим 678 до 700. Вычислить 1234 - 700 будет сильно проще, результат 534.

Так как мы вычли слишком большое число, то результату нужно вернуть недостающее: 700 - 678 = 22, к 534 прибавляем 22 и получаем окончательный результат 556.

Умножение на 11

Мы знаем, как просто умножить любое однозначное число на 11: просто два раза повторить его и - готово!

Но мало кто владеет навыком умножения двузначных и даже трёхзначных чисел на 11.

Чтобы умножить двузначное число на 11, необходимо разнести его цифры в разные стороны, а посередине записать их сумму. Если сумма больше 10 - то посередине оставляем вторую цифру от полученного числа, а десяток, то есть единицу, прибавляем к первой цифре.

Пример 1: 36×11 = 3 (3+6) 6 = 396

Пример 2: 57×11 = 5 (5+7) 7 = 627

Для умножения трёхзначных чисел:

  • Оставьте без изменения первую и последнюю цифру числа.
  • Сложите предпоследнюю цифру с последней запишите результат. Если он больше 10, запомните единицу.
  • Прибавьте к первой цифре вторую и запишите результат. Если от предыдущего сложения осталась единица, добавьте её к результату.
  • Если в результате последнего сложения осталась единица, прибавьте её к первой цифре исходного числа.

Пример 3 : 869×11

  1. Запоминаем 9 во временный результат. Результат: 8...9.
  2. Складываем 6 и 9, получаем 15. Записываем 5 перед 9, 1 - запоминаем. Результат: 8...59 (1 в уме).
  3. Складываем 8 и 6, получаем 14, прибавляем 1 из прошлого результата. Результат: 8559 (1 в уме).
  4. Прибавляем к 8 единицу из прошлого результата. Результат: 9559.

Умножение чисел от 11 до 19

Умножать такие числа можно используя следующий алгоритм:

  • Любое число из диапазона от 11 до 19 представляем как десятки и единицы.
  • Получаем формулу: (10+a)×(10+b).
  • Раскрываем скобки: 100+10×b+10×a+a×b.
  • Выносим за скобки общий множитель и получаем окончательную формулу, по которой можно считать и которую есть смысл запомнить: 100+10×(a+b)+a×b.

Пример: 13×17

  1. Сложим единицы - 3+7=10.
  2. Умножим результат на 10: 10×10 = 100.
  3. Прибавим 100: 100+100=200.
  4. Перемножим единицы: 3×7 = 21.
  5. Прибавим к результату из шага 3: 200+21 = 221.

Ментальная арифметика

Научиться считать в уме можно, освоив приёмы ментальной арифметики. Сначала вы изучаете выполнение арифметических операций на японских счётах - соробане. Затем тренируетесь совершать те же вычисления, передвигая костяшки в уме. Мы уже писали подробнее о том, . Освоить методику полностью помогут курсы ментальной арифметики !