Оксид железа (III): состав и молярная масса. Железо — общая характеристика элемента, химические свойства железа и его соединений

Железо было известно еще в доисторические времена, однако широкое применение нашло значительно позже, так как в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определенном уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Железом, о чем свидетельствуют его названия на языках древних народов: древнеегипетское "бени-пет" означает "небесное железо"; древнегреческое sideros связывают с латинским sidus (род. падеж sideris) - звезда, небесное тело. В хеттских текстах 14 века до н. э. упоминается о Железе как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, франц. fer, итал. ferro).

Способ получения Железа из руд был изобретен в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Железа распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришел железный век. Гомер (в 23-й песне "Илиады") рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Железо получали по сыродутному процессу. Железную руду восстанавливали древесным углем в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из нее выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Железа науглероживалась, то есть получался чугун; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна "чушка", "свинское железо" - англ. pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причем такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 веках кричный способ был уже широко распространен.

В 14 веке чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь ("домницу"), а затем и в доменную печь. В середине 18 века в Европе начал применяться тигельный процесс получения стали, который был известен на территории Сирии еще в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлической шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 века стал развиваться пудлинговый процесс передела чугуна в Железо на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 веков, изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Железе и его сплавах. Однако все существовавшие способы производства Железа не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 века, когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 веке возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространение Железа в природе. По содержанию в литосфере (4,65% по массе) Железо занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Железо принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Железо - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Железо накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Железа играют окислительно-восстановительные реакции - переход 2-валентного Железа в 3-валентное и обратно. В биосфере при наличии органических веществ Fe 3+ восстанавливается до Fe 2+ и легко мигрирует, а при встрече с кислородом воздуха Fe 2+ окисляется, образуя скопления гидрооксидов 3-валентного Железа. Широко распространенные соединения 3-валентного Железа имеют красный, желтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование -"красноцветная формация" (красные и бурые суглинки и глины, желтые пески и т. д.).

Физические свойства Железа. Значение Железа в современное технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддается прокатке, штамповке и волочению. Способность растворять углерод и других элементы служит основой для получения разнообразных железных сплавов.

Железо может существовать в виде двух кристаллических решеток: α- и γ-объемноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910°С устойчиво α-Fe с ОЦК-решеткой (а = 2,86645Å при 20 °С). Между 910 °С и 1400°С устойчива γ-модификация с ГЦК-решеткой (а = 3,64Å). Выше 1400°С вновь образуется ОЦК-решетка δ-Fe (a = 2,94Å), устойчивая до температуры плавления (1539 °С). α-Fe ферромагнитно вплоть до 769 °С (точка Кюри). Модификации γ-Fe и δ-Fe парамагнитны.

Полиморфные превращения Железа и стали при нагревании и охлаждении открыл в 1868 году Д. К. Чернов. Углерод образует с Железом твердые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77Å), размещаются в междоузлиях кристаллической решетки металла, состоящей из более крупных атомов (атомный радиус Fe 1,26 Å). Твердый раствор углерода в γ-Fe называется аустенитом, а в α-Fe - ферритом. Насыщенный твердый раствор углерода в γ-Fe содержит 2,0% С по массе при 1130 °С; α-Fe растворяет всего 0,02- 0,04% С при 723 °С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твердый раствор углерода в α-Fe, очень твердый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твердости и пластичности.

Физические свойства Железа зависят от его чистоты. В промышленных железных материалах Железу, как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает так называемых красноломкость, фосфор (даже 10 -2 % Р) - хладноломкость; углерод и азот уменьшают пластичность, а водород увеличивает хрупкость Железа (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Железа, относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26Å

Ионные радиусы Fe 2+ 0,80Å, Fe 3+ 0.67Å

Плотность (20°C) 7 ,874 г/см 3

t кип около 3200°С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт/(м·K)

Теплоемкость Железа зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоемкость (0-1000°С) 640,57 дж/(кг·К) .

Удельное электрическое сопротивление (20°С) 9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления (0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м 2 (19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга 4·10 -6

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв 170-210 Мн/м 2

Относительное удлинение 45-55%

Твердость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Химические свойства Железа. Конфигурация внешней электронной оболочки атома 3d 6 4s 2 . Железо проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Железа). С кислородом Железо образует оксид (II) FeO, оксид (III) Fe 2 O 3 и оксид (II,III) Fe 3 O 4 (соединение FeO c Fe 2 O 3 , имеющее структуру шпинели). Во влажном воздухе при обычной температуре Железо покрывается рыхлой ржавчиной (Fe 2 O 3 ·nH 2 O). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Железа. При нагревании Железа в сухом воздухе выше 200 °С оно покрывается тончайшей оксидной пленкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Железа - воронения. При нагревании в водяном паре Железо окисляется с образованием Fe 3 O 4 (ниже 570 °С) или FeO (выше 570 °С) и выделением водорода.

Гидрооксид Fe(OH) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей Fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом Fe(OH) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурый гидрооксид Fe(OH) 3 . Оксид FeO проявляет основные свойства. Оксид Fe 2 O 3 амфотерен и обладает слабо выраженной кислотной функцией; реагируя с более основными оксидами (например, с MgO, она образует ферриты - соединения типа Fe 2 O 3 ·nMeO, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Железа, существующего в виде ферратов, например K 2 FeO 4 , солей не выделенной в свободном состоянии железной кислоты.

Железо легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды FeCl 2 и FeCl 3 . При нагревании Железа с серой образуются сульфиды FeS и FeS 2 . Карбиды Железа - Fe 3 C (цементит) и Fe 2 C (е-карбид) - выпадают из твердых растворов углерода в Железе при охлаждении. Fe 3 C выделяется также из растворов углерода в жидком Железе при высоких концентрациях С. Азот, подобно углероду, дает с Железом твердые растворы внедрения; из них выделяются нитриды Fe 4 N и Fe 2 N. С водородом Железо дает лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Железо энергично реагирует с кремнием и фосфором, образуя силициды (например, Fe 3 Si и фосфиды (например, Fe 3 P).

Соединения Железа с многими элементами (О, S и другими), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в оксиде Железа (II) часть ионов Fe 2+ в узлах решетки замещена ионами Fe 3+ ; для сохранения электронейтральности некоторые узлы решетки, принадлежавшие ионам Fe 2+ , остаются пустыми.

Нормальный электродный потенциал Железа в водных растворах его солей для реакции Fe = Fe 2+ + 2e составляет -0,44 в, а для реакции Fe = Fe 3+ + 3e равен -0,036 в. Таким образом, в ряду активностей Железо стоит левее водорода. Оно легко растворяется в разбавленных кислотах с выделением Н 2 и образованием ионов Fe 2+ . Своеобразно взаимодействие Железа с азотной кислотой. Концентрированная HNO 3 (плотность 1,45 г/см 3) пассивирует Железо вследствие возникновения на его поверхности защитной оксидной пленки; более разбавленная HNO 3 растворяет Железо с образованием ионов Fe 2+ или Fe 3+ , восстанавливаясь до NH 3 или N 2 и N 2 O. Растворы солей 2-валентного Железа на воздухе неустойчивы - Fe 2+ постепенно окисляется до Fe 3+ . Водные растворы солей Железа вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей Fe 3+ тиоцианат-ионов SCN- дает яркую кроваво-красную окраску вследствие возникновения Fe(SCN) 3 что позволяет открывать присутствие 1 части Fe 3+ примерно в 10 6 частях воды. Для Железа характерно образование комплексных соединений.

Получение Железа. Чистое Железо получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Постепенно увеличивается производство достаточно чистого Железо путем его прямого восстановления из рудных концентратов водородом, природным газом или углем при относительно низких температурах.

Применение Железа. Железо - важнейший металл современной техники. В чистом виде Железо из-за его низкой прочности практически не используется, хотя в быту "железными" часто называют стальные или чугунные изделия. Основная масса Железа применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Железа приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железом руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путем окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом S, P, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и других элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Железа особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и другие. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Железа создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Железа и его сплавов постоянно растет.

Железо как художественный материал использовалось с древности в Египте, Месопотамии, Индии. Со времен средневековья сохранились многочисленные высокохудожественные изделия из Железа в странах Европы (Англии, Франции, Италии, России и других) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Железа (часто со слюдяной подкладкой) отличаются плоскостными формами, четким линейно-графическим силуэтом и эффектно просматриваются на световоздушном фоне. В 20 веке Железо используется для изготовления решеток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Железо в организме. Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (так называемые концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Железа). Почти все Железо в организмах животных и растений связано с белками. Недостаток Железа вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Железа, вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Железа, и растения не получают его в достаточном количестве; в кислых почвах Железо переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Железа заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60-110 мг Железа, что значительно превышает его суточную потребность. Всасывание поступившего с пищей Железа происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Железо-белкового комплекса - ферритина. Основное депо Железа в организме - печень и селезенка. За счет ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и других железосодержащие ферменты. Выделяется Железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Железе меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым-0,1 и беременным - 0,3 мг Железа в сутки. У животных потребность в Железе ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг; для поросят - до 200 мг, для супоросных свиней - 60 мг.

Железо — всем известный химический элемент. Он относится к средним по химической активности металлам. Свойства и применение железа мы рассмотрим в этой статье.

Распространенность в природе

Существует довольно большое количество минералов, в состав которых входит феррум. Прежде всего, это магнетит. Он на семьдесят два процента состоит из железа. Его химическая формула — Fe 3 O 4 . Данный минерал еще называют магнитный железняк. Он обладает светло-серым цветом, иногда с темно-серым, вплоть до черного, с металлическим блеском. Наибольшее его месторождение среди стран СНГ находится на Урале.

Следующий минерал с высоким содержанием железа — гематит — он на семьдесят процентов состоит из данного элемента. Его химическая формула — Fe 2 O 3 . Его еще называют красным железняком. Он обладает окраской от красно-коричневой до красно-серой. Наибольшее месторождение на территории стран СНГ находится в Кривом Роге.

Третий по содержанию феррума минерал — лимонит. Здесь железа шестдесят процентов от общей массы. Это кристаллогидрат, то есть в его кристаллическую решетку вплетены молекулы воды, его химическая формула — Fe 2 O 3 .H 2 O. Как понятно из названия, данный минерал имеет желто-коричневатый цвет, изредка бурый. Он является одной из главных составляющих природных охр и используется в качестве пигмента. Его также называют бурый железняк. Самые крупные места залегания — Крым, Урал.

В сидерите, так называемом шпатовом железняке, сорок восемь процентов феррума. Его химическая формула — FeCO 3 . Его структура неоднородна и состоит из соединенных вместе кристаллов разного цвета: серых, бледно-зеленых, серо-желтых, коричнево-желтых и др.

Последний часто встречающийся в природе минерал с высоким содержанием феррума — пирит. Он обладает такой химической формулой FeS 2 . Железа в нем находится сорок шесть процентов от общей массы. Благодаря атомам серы данный минерал имеет золотисто-желтую окраску.

Многие из рассмотренных минералов применяются для получения чистого железа. Кроме того, гематит используют в изготовлении украшений из натуральных камней. Вкрапления пирита могут иметься в украшениях из лазурита. Кроме этого, в природе железо встречается в составе живых организмов — оно является одним из важнейших компонентов клетки. Данный микроэлемент обязательно должен поступать в организм человека в достаточном количестве. Лечебные свойства железа во многом связаны с тем, что данный химический элемент является основой гемоглобина. Поэтому употребление феррума хорошо сказывается на состоянии крови, а следовательно, и всего организма в целом.

Железо: физические и химические свойства

Рассмотрим по порядку два этих больших раздела. железа — это его внешний вид, плотность, температура плавления и т. д. То есть все отличительные черты вещества, которые связаны с физикой. Химические свойства железа — это его способность вступать в реакцию с другими соединениями. Начнем с первых.

Физические свойства железа

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.

Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все.

Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, - единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

С точки зрения химии

Данный элемент относится к металлам средней активности. Но химические свойста железа являются типичными и для всех остальных металлов (кроме тех, которые находятся правее водорода в электрохимическом ряду). Оно способно реагировать со многими классами веществ.

Начнем с простых

Феррум вступает во взаимодействие с килородом, азотом, галогенами (йодом, бромом, хлором, фтором), фосфором, карбоном. Первое, что нужно рассмотреть, - реакции с оксигеном. При сжигании феррума образуются его оксиды. В зависимости от условий проведения реакции и пропорций между двумя участниками они могут быть разнообразными. Как пример такого рода взаимодействиям можно привести следующие уравнения реакций: 2Fe + O 2 = 2FeO; 4Fe + 3O 2 = 2Fe 2 O 3 ; 3Fe + 2O 2 = Fe 3 O 4 . И свойства оксида железа (как физические, так и химические) могут быть разнообразными, в зависимости от его разновидности. Такого рода реакции происходят при высоких температурах.

Следующее — взаимодействие с азотом. Оно также может произойти только при условии нагревания. Если взять шесть молей железа и один моль азота, получим два моля нитрида железа. Уравнение реакции будет выглядеть следующим образом: 6Fe + N 2 = 2Fe 3 N.

При взаимодействии с фосфором образуется фосфид. Для проведения реакции необходимы такие компоненты: на три моля феррума - один моль фосфора, в результате образуется один моль фосфида. Уравнение можно записать следующим образом: 3Fe + P = Fe 3 P.

Кроме того, среди реакций с простыми веществами можно также выделить взаимодействие с серой. При этом можно получить сульфид. Принцип, по которому происходит процесс образования данного вещества, подобен описанным выше. А именно происходит реакция присоединения. Для всех химических взаимодействий подобного рода нужны специальные условия, в основном это высокие температуры, реже — катализаторы.

Также распространены в химической промышленности реакции между железом и галогенами. Это хлорирование, бромирование, йодирование, фторирование. Как понятно из названий самих реакций, это процесс присоединения к атомам феррума атомов хлора/брома/йода/фтора с образованием хлорида/бромида/йодида/фторида соответственно. Данные вещества широко используются в разнообразных отраслях промышленности. Кроме того, феррум способен соединяться с кремнием при высоких температурах. Благодаря тому что химические свойства железа разнообразны, его часто используют в химической отрасли промышленности.

Феррум и сложные вещества

От простых веществ перейдем к тем, молекулы которых состоят из двух и более различных химических элементов. Первое, что нужно упомянуть, - реакцию феррума с водой. Здесь проявляются основные свойства железа. При нагревании воды вместе с железом образуется (называется он так потому, что при взаимодействии с той же водой образует гидроксид, по-другому говоря — основание). Итак, если взять по одному молю обоих компонентов, образуются такие вещества, как диоксид феррума и водород в виде газа с резким запахом — также в молярных пропорциях один к одному. Уравнение такого рода реакции можно записать следующим образом: Fe + H 2 O = FeO + H 2 . В зависимости от пропорций, в которых смешать эти два компонента, можно получить ди- либо триоксид железа. Оба этих вещества очень распространены в химической промышленности, а также используются во многих других отраслях.

С кислотами и солями

Так как феррум находится левее водорода в электрохимическом ряду активности металлов, он спосособен вытеснять данный элемент из соединений. Примером этому является реакция замещения, которую можно наблюдать при добавлении железа к кислоте. Например, если смешать в одинаковых молярных пропорциях железо и сульфатную кислоту (она же серная) средней концентрации, в результате получим сульфат железа (ІІ) и водород в одинаковых молярных пропорциях. Уравнение такой реакции будет выглядеть таким образом: Fe + H 2 SO 4 = FeSO 4 + H 2 .

При взаимодействии с солями проявляются восстановительные свойства железа. То есть с помощью него можно выделить менее активный металл из соли. Например, если взять один моль и столько же феррума, то можно получить сульфат железа (ІІ) и чистую медь в одинаковых молярных пропорциях.

Значение для организма

Один из самых распространенных в земной коре химических элементов — железо. мы уже рассмотрели, теперь подойдем к нему с биологической точки зрения. Феррум выполняет очень важные функции как на клеточном уровне, так и на уровне всего организма. В первую очередь железо является основой такого белка, как гемоглобин. Он необходим для транспорта кислорода по крови от легких ко всем тканям, органам, к каждой клетке организма, в первую очередь к нейронам головного мозга. Поэтому полезные свойства железа невозможно переоценить.

Кроме того что он влияет на кровеобразование, феррум также важен для полноценного функционирования щитовидной железы (для этого нужен не только йод, как некоторые считают). Также железо принимает участие во внутриклеточном обмене веществ, регулирует иммунитет. Еще феррум в особенно большом количестве содержится в клетках печени, так как помогает нейтрализовать вредные вещества. Также он является одним из главных компонентов многих видов ферментов нашего организма. В суточном рационе человека должно содержаться от десяти до двадцати миллиграмм данного микроэлемента.

Продукты, богатые железом

Таких немало. Они есть как растительного, так и животного происхождения. Первые — это злаки, бобовые, крупы (в особенности гречка), яблоки, грибы (белые), сухофрукты, шиповник, груши, персики, авокадо, тыква, миндаль, финики, помидоры, брокколи, капуста, черника, ежевика, сельдерей и др. Вторые — печень, мясо. Употребление продуктов с высоким содержанием железа особенно важно в период беременности, так как организм формирующегося плода требует большого количества данного микроэлемента для полноценного роста и развития.

Признаки недостатка в организме железа

Симптомами слишком маленького количества феррума, поступающего в организм, являются усталость, постоянное замерзание рук и ног, депрессии, ломкость волос и ногтей, снижение интеллектуальной активности, пищеварительные расстройства, низкая работоспособность, нарушения в работе щитовидной железы. Если вы заметили несколько из этих симптомов, то стоит увеличить количество продуктов с содержанием железа в своем рационе либо купить витамины или пищевые добавки с содержанием феррума. Также обязательно нужно обратиться к врачу, если какие-либо из этих симптомов вы ощущаете слишком остро.

Использование феррума в промышленности

Применение и свойства железа тесно связаны. В связи с его ферромагнитностью, его применяют для изготовления магнитов — как более слабых для бытовых целей (сувенирные магниты на холодильник и т. д.), так и более сильных — для промышленных целей. В связи с тем что рассматриваемый металл обладает высокой прочностью и твердостью, его с древности использовали для изготовления оружия, доспехов и других военных и бытовых инструментов. К слову, еще в Древнем Египте было известно метеоритное железо, свойства которого превосходят таковые у обычного металла. Также такое особенное железо использовалось и в Древнем Риме. Из него изготавливали элитное оружие. Щит или меч, выполненный из метеоритного металла, мог иметь только очень богатый и знатный человек.

Вообще, металл, который мы рассматриваем в данной статье, является самым разносторонне используемым среди всех веществ данной группы. Прежде всего, из него изготавливаются сталь и чугун, которые применяются для производства всевозможных изделий, необходимых как в промышленности, так и в повседневной жизни.

Чугуном называется сплав железа и углерода, в котором второго присутствует от 1,7 до 4,5 процента. Если второго меньше, чем 1,7 процента, то такого рода сплав называется сталью. Если углерода в составе присутствует около 0,02 процента, то это уже обыкновенное техническое железо. Присутствие в сплаве углерода необходимо для придания ему большей прочности, термоустойчивости, стойкости к ржавлению.

Кроме того, в стали может содержаться много других химических элементов в качестве примесей. Это и марганец, и фосфор, и кремний. Также в такого рода сплав для придания ему определенных качеств могут быть добавлены хром, никель, молибден, вольфрам и многие другие химические элементы. Виды стали, в которых присутствует большое количество кремния (около четырех процентов), используются в качестве трансформаторных. Те, в составе которых много марганца (вплоть до двенадцати-четырнадцати процентов), находят свое применение при изготовлении деталей железных дорог, мельниц, дробилок и других инструментов, части которых подвержены быстрому стиранию.

Молибден вводят в состав сплава, чтобы сделать его более термоустойчивым — такие стали используются в качестве инструментальных. Кроме того, для получения всем известных и часто используемых в быту в виде ножей и других бытовых инструментов нержавеющих сталей необходимо добавление в сплав хрома, никеля и титана. А для того чтобы получить ударостойкую, высокопрочную, пластичную сталь, достаточно добавить к ней ванадий. При вводе в состав ниобия можно добиться высокой устойчивости к коррозии и воздействию химически агрессивных веществ.

Минерал магнетит, который был упомянут в начале статьи, нужен для изготовления жестких дисков, карт памяти и других устройств подобного типа. Благодаря магнитным свойствам, железо можно найти в устройстве трансформаторов, двигателей, электронных изделий и др. Кроме того, феррум могут добавлять в сплавы прочих металлов для придания им большей прочности и механической устойчивости. Сульфат данного элемента применяют в садоводстве для борьбы с вредителями (наряду с сульфатом меди).

Являются незаменимыми при очистке воды. Кроме того, порошок магнетита используется в черно-белых принтерах. Главный способ применения пирита — получение из него серной кислоты. Данный процесс происходит в лабораторных условиях в три этапа. На первой стадии пирит феррума сжигают, получая при этом оксид железа и диоксид серы. На втором этапе происходит превращение диоксида сульфура в его триоксид при участии кислорода. И на завершающей стадии полученное вещество пропускают через в присутствии катализаторов, тем самым и получая серную кислоту.

Получение железа

В основном добывают данный металл из двух основных его минералов: магнетита и гематита. Делают это с помощью восстановления железа из его соединений углеродом в виде кокса. Делается это в доменных печах, температура в которых достигает двух тысяч градусов по шкале Цельсия. Кроме того, есть способ восстановления феррума водородом. Для этого необязательно наличие доменной печи. Для осуществления данного метода берут специальную глину, смешивают ее с измельченной рудой и обрабатывают водородом в шахтной печи.

Заключение

Свойства и применение железа разнообразны. Это, пожалуй, самый важный в нашей жизни металл. Став известным человечеству, он занял место бронзы, которая на тот момент была основным материалом для изготовления всех орудий труда, а также оружия. Сталь и чугун во многом превосходят сплав меди с оловом с точки зрения своих физических свойств, устойчивости к механическим воздействиям.

Кроме того, железо на нашей планете более распространено, чем многие другие металлы. его в земной коре составляет почти пять процентов. Это четвертый по распространенности в природе химический элемент. Также данный химический элемент очень важен для нормального функционирования организма животных и растений, прежде всего потому, что на его основе построен гемоглобин. Железо является важнейшим микроэлементом, употребление которого важно для поддержания здоровья и нормальной работы органов. Кроме вышеперечисленного, это единственный металл, который обладает уникальными магнитными свойствами. Без феррума невозможно представить нашу жизнь.

– составная гемоглобина. Этот сложный белок входит в эритроциты, известные так же как красные кровяные тельца. Без них, собственно, кровь не была бы алой, да и жизни бы не было.

Эритроциты транспортируют по организму углекислый газ и кислород. Они необходимы для жизнедеятельности. А для чего еще необходимо железо , каковы его свойства и стоимость в прямом и переносном смыслах?

Химические и физические свойства железа

Дотрагивались до железа в прохладном помещении? Холод от прикосновения к металлу – результат его высокой теплопроводности. Материал моментально забирает энергию тела, передавая ее окружающей среде. В результате, человеку становится холодно.

Электропроводность железа тоже на высоте. Металл с легкостью передает ток благодаря свободным электронам в атоме. В нем 7 слоев. На последних 2-х расположены 8 электронов. При возбуждении все они могут быть валентными, то есть способными образовать новые связи.

Внешне металл железо серебристо-серый. Встречаются самородные формы. Чистое железо пластичное и ковкое. У выраженный металлический блеск и средняя твердость – 4 балла по . 10 баллов – показатель самого твердого на земле камня алмаз, а 1-им баллом отмечен тальк.

Железо – элемент средней тугоплавкости. Закипает металл при 2860-ти градусах, а размягчается при 1539-ти. В таком состоянии материал теряет ферромагнитные свойства. Они присущи лишь твердому состоянию железа. Элемент становится магнитом, попадая в поле.

Но, интереснее то, что после его исчезновения, металл еще долгое время остается магнитом. Такая особенность обусловлена все теми же свободными электронами в структуре атома. Перемещаясь, частицы меняют его строение и свойства.

Железо – химический элемент , легко вступающий в реакции с бромом, фтором, хлором и другими галогенами. Это элементы 17-ой группы таблицы Менделеева. При обычных условиях протекает и взаимодействие с кислородом.

Теперь, о реакциях нагрева. При сжигании металла образуются его оксиды. Их несколько видов: — 2FeO, 2Fe 2 O 3 , Fe 3 O 4 . Какой именно получится, зависит от пропорций исходных элементов и условий совмещения. Свойства оксидов разнятся.

Нагрев запускает и реакцию с . Для нее нужно 6 молей железа и один моль газа. Выход – 2 моля нитрида 26-го элемента. Его фосфид формируется уже в сочетании с фосфором. Еще одно простое вещество, объединяющееся с феррумом – . Получается, естественно, сульфид. Протекает реакция присоединения.

Из сложных веществ, то есть состоящих из молекул, железо взаимодействует с кислотами. Металл вытесняет из них водород. Получается замещение. Так, и взаимодействия с серной кислотой выходит сульфат феррума и чистый водород.

Возможны и реакции с . Их железо восстанавливает. Иными словами, 26-ой элемент выделяет из веществ менее активный металл. Соединив феррум, к примеру, с сульфатом меди, получают сульфат уже железа. остается в первозданном виде.

Применение железа

Где железо применяется, вытекает из его свойств. Ферромагнитоность пригождается при изготовлении сувениров и промышленных установок. Иными словами, из металла делают магниты, как для холодильников, так и для больших производств. Прочность материала, твердость – повод использовать его для изготовления оружия, брони.

Особым шиком считаются модели из метеоритного железа . В космических телах свойства феррума усилены. Поэтому, ножи и доспехи получаются особенно острыми, прочными. Признаки железа метеоритного заметили еще в Древнем Риме.

Известны и сплавы железа , в частности, чугун и сталь. Из них отливают вещи бытового, повседневного характера, к примеру, оградки, беседки, фурнитуру. Используют феррума и для промышленных целей. Интересно, что состав у стали и чугуна один, пропорции разные. И там, и там сливаются железо с углеродом . В стали газа меньше 1,7%. В чугуне углерода от 1,7 до 4,5%.

Углерод в сплавах железа играет роль упрочняющего элемента. Он снижает подверженность смеси коррозии и делает материал термоустойчивым. К сталям примешивают и иные добавки. Не зря существуют разные марки сплава. С , к примеру, производят стойкую к ударам и, при этом, пластичную сталь.

В виде хлорида 26-ой элемент используют для очистки воды. Пригождается металл и в медицине. Лечение железом необходимо при анемии. Это недостаток красных кровяных телец и металла в их составе. Препараты железа выписывают, так же, больным туберкулезом, радикулитом, страдающим от судорог и кровотечений из носа.

26-ой элемент необходим и для нормального функционирования щитовидной железы. Обычно, ее дисфункцию связывают с дефицитом . Однако, не он один обеспечивает здоровье железы.

Немало феррума и в клетках печени. Там металл способствует нейтрализации вредных веществ, токсинов. Для поддержания в организм человека должны поступать не меньше 20-ти миллиграммов железа в сутки.

Добыча железа

Железо – распространенный металл. В природе немало минералов, в основе которых лежит 26-ой элемент. Больше всего феррума в и . Из них-то и удаляют железо .

Проводится реакция восстановления металла. Для того нужен кокс, то есть соединение углерода. Взаимодействие протекает при температуре в 2000 градусов Цельсия, в доменных .

Без доменных печей обходятся при восстановлении феррума чистым водородом. Потребуются уже шахтные печи. Так называют модели вытянутые по вертикали.

Рабочее пространство аппарата подобно цилиндру или конусу. В них помещают измельченную руду железа , смешанную со специальной . Потом, добавляют водород. Итог все тот же – чистый феррум.

Цена железа

Стоимость металла зависит от вида продукции. Большинство вещей делаются из сплавов феррума, к примеру, кровельные материалы. Покрытия для крыш, как правило, листовые. Цена за квадратный метр варьируется от 300-от до 600-от с лишним рублей в зависимости от толщины железа.

Кровельные листы рифленые, сложной геометрии и особого состава. Простые пласты стоят дешевле. Есть предложения купить 30 листов 2,5 на 1,3 метра за 1000 рублей. Толщина – 1,5 миллиметра.

Чистый элемент в таблетках стоит около 1600 рублей за 180-200 штук. Если же приобретается готовое изделие, в которое вложен ручной труд, бывает сложно уложиться и в десятки, сотни тысяч. Яркий пример – кованная продукция по индивидуальным заказам.

За необычные ворота, мебель, вазы, кузнецы «срывают» немалый куш. Большую часть цены составляет не материал, а человеческий труд, воплощение в жизнь задумки.

Что касается стоимости железосодержащей руды, за тонну в России просят около 40-ка американских долларов. Это ценник за сырье с 60-процентным содержанием феррума. Когда выделяют чистый порошок 26-го элемента, за 1000 килограммов просят уже не меньше 560-600-от долларов США.

Большинство фирм торгуют оптом. Предложений купить только одно кило металла, редки. 1000 граммов обходится примерно в 1-1,5 доллара. Некоторые компании фасуют порошок феррума в мешки по 5, 10, 25 килограммов. Объявления о продаже размещены в интернете.

Подробности Категория: Просмотров: 9427

ЖЕЛЕЗО , Fe, химический элемент, атомный вес 55,84, порядковый номер 26; расположен в VIII группе периодической системы в одном ряду с кобальтом и никелем, температура плавления - 1529°С, температура кипения - 2450°С; в твердом состоянии имеет синевато-серебристый цвет. В свободном виде железо встречается лишь в метеоритах, которые, однако, содержат примеси Ni, Р, С и других элементов. В природе соединения железа широко распространены повсеместно (почва, минералы, гемоглобин животных, хлорофилл растений), гл. обр. в виде окислов, гидратов окислов и сернистых соединений, а также углекислого железа, из которых и состоит большинство железных руд.

Химически чистое железо получается путем нагревания щавелевокислого железа, при чем при 440°С сначала получается матовый порошок закиси железа, обладающий способностью воспламеняться на воздухе (т. н. пирофорическое железо); при последующем восстановлении этой закиси образовавшийся порошок приобретает серый цвет и теряет пирофорические свойства, переходя в металлическое железо. При восстановлении закиси железа при 700°С железо выделяется в виде мелких кристаллов, которые затем сплавляются в вакууме. Другой способ получения химически чистого железа состоит в электролизе раствора солей железа, например FeSО 4 или FeCl 3 в смеси с MgSО 4 , СаСl 2 или NH 4 Cl (при температуре выше 100°С). Однако, при этом железо окклюдирует значительное количество электролитического водорода, вследствие чего приобретает твердость. При прокаливании до 700°С водород выделяется, и железо становится мягким и режется ножом, как свинец (твердость по шкале Моса - 4,5). Весьма чистое железо может быть получено алюминотермическим путем из чистой окиси железо. (см. Алюминотермия). Хорошо образованные кристаллы железа встречаются редко. В полостях больших кусков литого железа иногда образуются кристаллы октаэдрической формы. Характерным свойством железа является его размягчаемость, тягучесть и ковкость при температуре, значительно более низкой, чем температура плавления. При действии на железо крепкой азотной кислоты (не содержащей низших окислов азота), железо покрывается налетом окислов и становится нерастворимым в азотной кислоте.

Соединения железа

Легко соединяясь с кислородом, железо образует несколько окислов: FeO - закись железа, Fe 2 О 3 - окись железа, FeО 3 - ангидрид железной кислоты и FeО 4 – ангидрид наджелезной кислоты. Кроме того, железо образует еще окисел смешанного типа Fe 3 О 4 - закись-окись железа, т. н. железную окалину. В сухом воздухе, однако, железо не окисляется; ржавчина представляет собой водные окислы железа, образующиеся при участии влаги воздуха и СО 2 . Закиси железа FeO соответствует гидрат Fe(OH) 2 и целый ряд солей двухвалентного железа, способных при окислении переходить в соли окиси железа, Fe 2 О 3 , в которой железо проявляет себя в качестве трехвалентного элемента; на воздухе гидрат закиси железа, отличающийся сильными восстановительными свойствами, легко окисляется, переходя в гидрат окиси железа. Гидрат закиси железа слабо растворяется в воде, и раствор этот имеет явственно щелочную реакцию, свидетельствующую об основном характере двухвалентного железа. Окись железа встречается в природе (см. Железный сурик), искусственно же м. б. получена в виде красного порошка при прокаливании железного порошка и при обжигании серного колчедана для получения сернистого газа. Безводная окись железа, Fе 2 O 3 , м. б. получена в двух модификациях, причем переход одной из них в другую происходит при нагревании и сопровождается значительным выделением тепла (самонакаливанием). При сильном прокаливании Fe 2 О 3 выделяет кислород и переходит в магнитную закись-окись, Fe 3 О 4 . При действии щелочей на растворы солей трехвалентного железа выпадает осадок гидрата Fe 4 О 9 H 6 (2Fe 2 О 3 ·3Н 2 О); при кипячении его с водой образуется гидрат Fe 2 О 3 ·Н 2 О, трудно растворяющийся в кислотах. Железо образует соединения с различными металлоидами: с С, Р, S, с галоидами, а также и с металлами, например с Mn, Cr, W, Сu и др.

Соли железа разделяются на закисные - двухвалентного железа (ферро-соли) и на окисные - трехвалентного железа (ферри-соли).

Соли закисного железа . Хлористое железо , FeCl 2 , получается при действии сухого хлора на железо, в виде бесцветных листочков; при растворении железа в НСl хлористое железо получается в виде гидрата FeCl 2 ·4H 2 O и применяется в виде водных или спиртовых растворов в медицине. Йодистое железо , FeJ 2 , получается из железа и йода под водой в виде зеленых листочков и применяется в медицине (Sirupus ferri jodati); при дальнейшем действии йода образуется FeJ 3 (Liquor ferri sesquijodati).

Сернокислое закисное железо, железный купорос , FeSО 4 ·7H 2 О (зеленые кристаллы) образуется в природе в результате окисления пирита и серных колчеданов; эта соль образуется также в качестве побочного продукта при производстве квасцов; при выветривании или при нагревании до 300°С переходит в белую безводную соль - FeSО 4 ; образует также гидраты с 5, 4, 3, 2 и 1 частицами воды; легко растворяется в холодной воде (в горячей до 300%); раствор имеет кислую реакцию вследствие гидролиза; на воздухе окисляется, особенно легко в присутствии другого окисляющегося вещества, например, щавелевокислых солей, которые FeSО 4 вовлекает в сопряженную реакцию окисления, обесцвечивает КМnO 4 ; при этом процесс протекает по следующему уравнению:

2KMnO 4 + 10FeSO 4 +8H 2 SO 4 = 2MnSО 4 + K 2 SО 4 + 5Fe 2 (SO 4) 2 + 8Н 2 О.

Для этой цели, однако, применяется более постоянная на воздухе двойная соль Мора (NH 4) 2 Fe(SО 4) 2 ·6Н 2 О. Железный купорос применяется в газовом анализе для определения окиси азота, поглощаемой раствором FeSО 4 с образованием окрашенного в тёмно-бурый цвет комплекса (FeNО)SО 4 , а также для получения чернил (с дубильными кислотами), в качестве протравы при крашении, для связывания зловонных газов (H 2 S, NH 3) в отхожих местах и т. д.

Закисные соли железа применяются в фотографии благодаря их способности восстанавливать серебряные соединения на скрытом изображении, запечатлевшемся на фотографической пластинке.

Углекислое железо , FeCO 3 , встречается в природе в виде сидерита или железного шпата; получаемое осаждением водных растворов закисных солей железа карбонатами углекислое железо легко теряет СО 2 и окисляется на воздухе до Fe 2 О 3 .

Бикарбонат железа , H 2 Fe(CО 3) 2 , растворим в воде и встречается в природе в железистых источниках, из которых, окисляясь, выделяется на поверхности земли в виде гидрата окиси железа, Fe(OH) 3 , переходящего в бурый железняк.

Фосфорнокислое железо , Fе 3 (РO 4) 2 ·8Н 2 O, белый осадок; встречается в природе слегка окрашенный, вследствие окисления железа, в голубой цвет, в виде вивианита .

Соли окисного железа . Хлорное железо , FeCl 3 (Fe 2 Cl 6), получается при действии избытка хлора на железо в виде гексагональных красных табличек; хлорное железо на воздухе расплывается; из воды кристаллизуется в виде FeCl 3 ·6Н 2 О (желтые кристаллы); растворы имеют кислую реакцию; при диализе постепенно гидролизуется почти до конца с образованием коллоидного раствора гидрата Fe(OH) 3 . FeCl 3 растворяется в спирте и в смеси спирта с эфиром, при нагревании FeCl 3 ·6H 2 О разлагается на НСl и Fe 2 O 3 ; применяется в качестве протравы и в качестве кровоостанавливающего средства (Liquor ferri sesquichlorati).

Сернокислое окисное железо , Fe 2 (SO 4) 3 , в безводном состоянии имеет желтоватый цвет, в растворе сильно гидролизуется; при нагревании раствора выпадают основные соли; железные квасцы, MFe(SO 4) 2 ·12H 2 O, М - одновалентный щелочной металл; лучше всех кристаллизуются аммонийные квасцы, NH 4 Fe(SО 4) 2 ·12Н 2 О.

Окисел FeО 3 - ангидрид железной кислоты, равно как и гидрат этого окисла H 2 FeО 4 - железная кислота - в свободном состоянии не м. б. получены в виду их крайней непрочности; но в щелочных растворах могут существовать соли железной кислоты, ферраты (например K 2 FeО 4), образующиеся при накаливании железного порошка с селитрой или КСlO 3 . Известна также малорастворимая бариевая соль железной кислоты BaFeО 4 ; т. о., железная кислота в некоторых отношениях весьма напоминает серную и хромовую кислоты. В 1926 г. киевским химиком Горалевичем описаны соединения окисла восьмивалентного железа - наджелезного ангидрида FeО 4 , полученные при сплавлении Fe 2 О 3 с селитрой или бертолетовой солью в виде калиевой соли наджелезной кислоты K 2 FeО 5 ; FeО 4 - газообразное вещество, не образующее с водой наджелезной кислоты H 2 FeО 5 , которая, однако, м. б. выделена в свободном состоянии разложением кислотами соли K 2 FeО 5 . Бариевая соль BaFeO 5 ·7Н 2 О, а также кальциевая и стронциевая соли получены Горалевичем в виде неразлагающихся белых кристаллов, выделяющих лишь при 250-300°С воду и при этом зеленеющих.

Железо дает соединения: с азотом - азотистое железо (нитрид) Fe 2 N при нагревании порошка железа в струе NH 3 , с углеродом - карбид Fe 3 C при насыщении в электрической печи железа углем. Кроме того, изучен целый ряд соединений железа с окисью углерода - карбонилы железа , например, пентакарбонил Fe(CO) 5 - слегка окрашенная жидкость с около 102,9°С (при 749 мм, удельный вес 1,4937), затем оранжевое твердое тело Fe 2 (CO) 9 , нерастворимое в эфире и хлороформе, с удельным весом 2,085.

Большое значение имеют цианистые соединения железа . Кроме простых цианидов Fe(CN) 2 и Fe(CN) 3 , железо образует целый ряд комплексных соединений с цианистыми солями, как, например, соли железистосинеродистой кислоты H 4 Fe(CN) 6 , и соли железосинеродистой кислоты H 3 Fe(CN) 6 , например, красная кровяная соль, которые, в свою очередь вступают в реакции обменного разложения с солями закисного и окисного железа, образуя окрашенные в синий цвет соединения - берлинскую лазурь и турнбуллову синь. При замене в солях железистосинеродистой кислоты H 4 Fe(CN) 6 одной группы CN на одновалентные группы (NO, NО 2 , NH 3 , SО 3 , СО) образуются пруссо-соли, например, нитропруссид натрия (нитрожелезистосинеродистый натрий) Na 2 ·2Н 2 О, получаемый действием дымящей HNО 3 на K 4 Fe(CN) 6 , с последующей нейтрализацией содой, в виде рубиново-красных кристаллов, отделяемых кристаллизацией от образующейся одновременно селитры; соответствующая нитрожелезистосинеродистая кислота H 2 кристаллизуется также в виде тёмно-красных кристаллов. Нитропруссид натрия применяется в качестве чувствительного реактива на сероводород и сернистые металлы, с которыми он дает кроваво-красное, переходящее затем в синее, окрашивание. При действии медного купороса на нитропруссид натрия образуется бледно-зелёный нерастворимый в воде и в спирте осадок, применяемый для испытания эфирных масел.

Аналитически железо обнаруживается действием на его соли, в щелочном растворе, желтой кровяной соли. Соли трехвалентного железа образуют при этом синий осадок берлинской лазури. Соли двухвалентного железа образуют синий осадок турнбулловой сини при действии на них красной кровяной соли. С роданистым аммонием NH 4 CNS соли трехвалентного железа образуют растворимое в воде с кроваво-красным окрашиванием родановое железо Fe(CNS) 3 ; с таннином соли окисного железа образуют чернила. Интенсивной окраской отличаются также и медные соли железистосинеродистой кислоты, которые находят себе применение (увахромовый метод) в цветной фотографии. Из соединений железа, применяемых в медицине, кроме упомянутых галоидных соединений железа, имеют значение: металлическое железо (F. hydrogenio reductum), лимоннокислое железо (F. Citricum - 20% Fe), экстракт яблочнокислого железа (Extractum ferri pomatum), железный альбуминат (Liquor ferri albuminatum), ферратин - белковое соединение с 6% железа; ферратоза - раствор ферратина, карниферрин - соединение железа с нуклеином (30% Fe); ферратоген из нуклеина дрожжей (1% Fe), гематоген - 70%-ный раствор гемоглобина в глицерине, гемол - гемоглобин , восстановленный цинковой пылью.

Физические свойства железа

Имеющиеся в литературе числовые данные, характеризующие различные физические свойства железа, колеблются вследствие трудности получения железа в химически чистом состоянии. Поэтому наиболее достоверными являются данные, полученные для электролитического железа, в котором общее содержание примесей (С, Si, Mn, S, Р) не превышает 0,01-0,03%. Приводимые ниже данные в большинстве случаев и относятся к такому железу. Для него температура плавления равна 1528°С ± 3°С (Руер и Клеспер, 1914 г.), a температура кипения ≈ 2450°С. В твердом состоянии железо существует в четырех различных модификациях - α, β, γ и δ, для которых довольно точно установлены следующие температурные пределы:

Переход железа из одной модификации в другую обнаруживается на кривых охлаждения и нагревания критическими точками, для которых приняты следующие обозначения:

Указанные критические точки представлены на фиг. 1 схематическими кривыми нагревания и охлаждения. Существование модификаций δ-, γ- и α-Fe считается в настоящее время бесспорным, самостоятельное же существование β-Fe оспаривается вследствие недостаточно резкого отличия его свойств от свойств α-Fe. Все модификации железа кристаллизуются в форме куба, причем α, β и δ имеют пространственную решетку центрированного куба, а γ-Fe - куба с центрированными гранями. Наиболее отчетливые кристаллографические характеристики модификаций железа получены на рентгеновских спектрах, как это представлено на фиг. 2 (Вестгрин, 1929 г.). Из приведенных рентгенограмм следует, что для α-, β- и δ-Fe линии рентгеновского спектра одни и те же; они соответствуют решетке центрированного куба с параметрами 2,87, 2,90 и 2,93 Ȧ, а для γ-Fe спектр соответствует решетке куба с центрированными гранями и параметрами 3,63-3,68 А.

Удельный вес железа колеблется в пределах от 7,855 до 7,864 (Кросс и Гилль, 1927 г.). При нагревании удельный вес железа падает вследствие теплового расширения, для которого коэффициенты увеличиваются с температурой, как показывают данные табл. 1 (Дризен, 1914 г.).

Понижение коэффициентов расширения в интервалах 20-800°С, 20-900°С, 700-800°С и 800- 900°С объясняется аномалиями в расширении при переходе через критические точки А С2 и А С3 . Этот переход сопровождается сжатием, особенно резко выраженным в точке А С3 , как показывают кривые сжатия и расширения на фиг. 3. Плавление железа сопровождается расширением его на 4,4% (Гонда и Энда, 1926 г.). Теплоемкость железа довольно значительна по сравнению с другими металлами и выражается для разных температурных интервалов величинами от 0,11 до 0,20 Сal, как показывают данные табл. 2 (Обергоффер и Гроссе, 1927 г.) и построенная на основании их кривая (фиг. 4).

В приведенных данных превращения А 2 , А 3 , А 4 и плавление железа обнаруживаются настолько отчетливо, что для них легко вычисляются тепловые эффекты: А 3 ... + 6,765 Сal, А 4 ... + 2,531 Сal, плавление железа... - 64,38 Сal (по С. Умино, 1926 год, - 69,20 Сal).

Железо характеризуется приблизительно в 6-7 раз меньшей теплопроводностью, чем серебро, и в 2 раза меньшей, чем алюминий; а именно, теплопроводность железа равняется при 0°С - 0,2070, при 100°С - 0,1567, при 200°С - 0,1357 и при 275°С - 0,1120 Cal/см·сек·°С. Наиболее характерными свойствами железа являются магнитные, выражаемые целым рядом магнитных констант, получаемых при полном цикле намагничивания железа. Эти константы для электролитического железа выражаются следующими значениями в гауссах (Гумлих, 1909 и 1918 гг.):

При переходе через точку А с2 ферромагнитные свойства железа почти исчезают и м. б. обнаружены только при очень точных магнитных измерениях. Практически β-, γ- и δ-модификации считаются немагнитными. Электропроводность для железа при 20°С равняется R -1 мо м/мм 2 (где R - электрическое сопротивление железа, равное 0,099 Ω мм 2 /м). Температурный коэффициент электросопротивления а0-100° х10 5 колеблется в пределах от 560 до 660, где

Холодная обработка (прокатка, ковка, протяжка, штамповка) очень заметно отражается на физических свойствах железа. Так, %-ное изменение их при холодной прокатке выражается следующими цифрами (Геренс, 1911 г.): коэрцитивное напряжение +323%, магнитный гистерезис +222%, электросопротивление + 2%, удельный вес - 1%, магнитная проницаемость - 65%. Последнее обстоятельство делает понятными те значительные колебания физических свойств, которые наблюдаются у разных исследователей: к влиянию примесей нередко присоединяется еще и влияние холодной механической обработки.

О механических свойствах чистого железа известно очень мало. Электролитическое железо, сплавленное в пустоте, обнаружило: временное сопротивление на разрыв 25 кг/мм 2 , удлинение - 60%, сжатие поперечного сечения - 85%, твердость по Бринеллю - от 60 до 70.

Структура железа находится в зависимости от содержания в нем примесей (хотя бы и в незначительных количествах) и предварительной обработки материала. Микроструктура железа, как и других чистых металлов, состоит из более или менее крупных зерен (кристаллитов), носящих здесь название феррита

Размеры и резкость их очертаний зависят гл. обр. от скорости охлаждения железа: чем последняя меньше, тем больше развиты зерна и тем резче их контуры. С поверхности зерна бывают окрашены чаще всего неодинаково вследствие неодинаковой кристаллографии, ориентировки их и неодинакового травящего действия реактивов по разным направлениям в кристалле. Нередко зерна бывают вытянуты в одном направлении в результате механической обработки. Если обработка происходила при невысоких температурах, то на поверхности зерен появляются линии сдвигов (линии Неймана), как результат скольжения отдельных частей кристаллитов по плоскостям их спайности. Эти линии являются одним из признаков наклепа и тех изменений в свойствах, о которых было упомянуто выше.

Железо в металлургии

Термин железо в современной металлургии присваивается лишь сварочному железу, т. е. малоуглеродистому продукту, получаемому в тестообразном состоянии при температуре, не достаточной для плавления железа, но высокой настолько, что отдельные частицы его хорошо свариваются друг с другом, давая после проковки однородный мягкий продукт, не принимающий закалки. Железо (в указанном смысле слова) получается: 1) непосредственно из руды в тестообразном состоянии сыродутным процессом; 2) таким же способом, но при более низкой температуре, недостаточной для сваривания частиц железа; 3) переделом чугуна кричным процессом; 4) переделом чугуна пудлингованием.

1) Сыродутный процесс в наст. время применяется лишь малокультурными народами и в таких местностях, куда не может (по отсутствию удобных путей сообщения) проникнуть американское или европейское железо, получаемое современными способами. Процесс ведется в открытых сыродутных горнах и печах. Сырыми материалами для него служат железная руда (обыкновенно бурый железняк) и древесный уголь. Уголь засыпается в горн в той половине его, куда подводится дутье, руда же - кучей, с противоположной стороны. Образующаяся в толстом слое горящего угля окись углерода проходит через всю толщу руды и, имея высокую температуру, восстанавливает железо. Восстановление руды совершается постепенно - с поверхности отдельных кусков к сердцевине. Начинаясь с верхних частей кучи, оно ускоряется по мере продвижения руды в область более высокой температуры; окись железа при этом переходит сначала в магнитную окись, затем в закись, и, наконец, на поверхности кусков руды появляется металлическое железо. В то же время землистые примеси руды (пустая порода) соединяются с еще не восстановленной закисью железа и образуют легкоплавкий железистый шлак, который вытапливается через щели металлической оболочки, образующей как бы скорлупу в каждом куске руды. Будучи нагретыми до белокалильного жара, эти скорлупки свариваются друг с другом, образуя на дне горна губчатую массу железа - крицу, проникнутую шлаком. Для отделения от последнего вынутую из горна крицу разрубают на несколько частей, из которых каждую проковывают, подваривая, после охлаждения в том же горне в полосы или прямо в изделия (вещи домашнего обихода, оружие). В Индии сыродутный процесс ведется и теперь в сыродутных печах, которые отличаются от горнов только несколько большей высотой - около 1,5 м. Стены печей делаются из глиняной массы (не кирпича) и служат лишь одну плавку. Дутье подается в печь через одну фурму мехами, приводимыми в движение ногами или руками. В пустую печь загружается некоторое количество древесного угля («холостая колоша»), а затем попеременно, отдельными слоями, руда и уголь, при чем количество первой постепенно увеличивается до тех пор, пока не дойдет до определенного опытом отношения к углю; вес всей засыпанной руды определяется желаемым весом крицы, который, вообще говоря, незначителен. Процесс восстановления идет так же, как и в горне; железо тоже полностью не восстанавливается, и получающаяся на лещади крица заключает в себе много железистого шлака. Крицу извлекают разломкой печи и разрубают на части, в 2-3 кг весом. Каждую из них нагревают в кузнечном горне и обрабатывают под молотом; в результате получается превосходное мягкое железо, служащее, между прочим, материалом для изготовления индийской стали «вуц» (булат). Состав его следующий (в %):

Ничтожное содержание элементов - примесей железа - или совершенное их отсутствие объясняется чистотой руды, неполнотой восстановления железа и низкой температурой в печи. Расход древесного угля благодаря малым размерам горнов и печей и периодичности их действия очень велик. В Финляндии, Швеции и на Урале железо выплавляли в сыродутной печи Хусгавеля, в которой можно было регулировать ход процесса восстановления и насыщения железа углеродом; расход угля в ней - до 1,1 на единицу железа, выход которого достигал 90% содержания его в руде.

2) В будущем нужно ожидать развития производства железа непосредственно из руды не применением сыродутного процесса, а восстановлением железа при температуре, недостаточной для образования шлака и даже для спекания пустой породы руды (1000°С). Преимущества такого процесса - возможность применения низкосортных видов топлива, устранение флюса и расхода тепла на плавление шлака.

3) Получение сварочного железа переделом чугуна кричным процессом ведется в кричных горнах гл. обр. в Швеции (у нас - на Урале). Для передела выплавляют специальный чугун, т. н. ланкаширский, дающий наименьший угар. В составе его: 0,3-0,45% Si, 0,5-0,6% Mn, 0,02 Р, <0,01% S. Такой чугун в изломе кажется белым или половинчатым. Горючим в кричных горнах может служить только древесный уголь.

Процесс ведется след. обр.: горн, освобожденный от крицы, но с оставшимся на донной доске спелым шлаком конца процесса, наполняется углем, гл. обр. сосновым, на который укладывается подогретый продуктами горения чугун в количестве 165-175 кг (на 3/8 м 2 поперечного сечения горна приходится 100 кг садки чугуна). Поворотом клапана в воздухопроводе дутье направляется через трубы, расположенные в подсводовом пространстве горна, и нагревается здесь до температуры в 150-200°С, ускоряя т. о. плавление чугуна. Плавящийся чугун все время поддерживается (при помощи ломов) на угле выше фурм. При такой работе вся масса чугуна подвергается окислительному действию кислорода воздуха и углекислоты, проходя зону горения в виде капель. Большая поверхность их способствует быстрому окислению железа и его примесей - кремния, марганца и углерода. Смотря по содержанию этих примесей, чугун в большей или меньшей степени теряет их, прежде чем соберется на дне горна. Т. к. в шведском горне переделывается малокремнистый и маломарганцовый чугун, то, проходя горизонт фурм, он теряет весь свой Si и Мn (окислы которых с закисью железа образуют основной шлак) и значительную часть углерода. Плавление чугуна продолжается 20-25 мин. По окончании этого процесса пускают в горн холодное дутье. Осевший на дно горна металл начинает реагировать с находящимися там же спелыми шлаками, содержащими в себе большой избыток (по сравнению с количеством кремнезема) окислов железа - Fe 3 О 4 и FeO, окисляющих углерод с выделением окиси углерода, что приводит в кипение весь металл. Когда металл загустеет (от потери углерода) и «сядет товаром», последний поднимают ломами выше фурм, пускают опять горячее дутье и плавят «товар».

Во время вторичного плавления металл окисляется кислородом как дутья, так и шлаков, которые из него вытапливаются. На дно горна после первого подъема падает металл, достаточно мягкий для того, чтобы из отдельных наиболее спелых частей его собирать крицу. Но прежде, при употреблении кремнистых сортов чугуна, приходилось прибегать ко второму и даже третьему подъему товара, что, конечно, уменьшало производительность горна, увеличивало расход горючего и угар железа. На результаты работы оказывали влияние расстояние фурм от донной доски (глубина горна) и наклон фурм: чем круче поставлена фурма и меньше глубина горна, тем значительнее действие окислительной атмосферы на металл. Более пологий наклон фурм, как и большая глубина горна, уменьшает непосредственное действие кислорода дутья, предоставляя, т. о., большую роль действию шлака на примеси железа; окисление ими идет медленнее, но зато без угара железа. При всяких данных условиях наивыгоднейшее положение фурм относительно донной доски определяется опытом; в современном шведском горне глаз фурмы устанавливается на расстоянии 220 мм от донной доски, а наклон фурм меняется в тесных пределах - от 11 до 12°.

Получающаяся на дне горна крица заключает в себе, в отличие от сыродутной, очень мало механически увлеченного шлака; что же касается химических примесей железа, то Si, Мn и С м. б. полностью удалены (указываемое анализами ничтожное содержание Si и Мn входит в состав механической примеси - шлака), а сера - только отчасти, окисляясь дутьем во время плавления. В это же время окисляется и фосфор, уходя в шлак в виде фосфорножелезной соли, но последняя затем восстанавливается углеродом, и конечный металл может заключать в себе даже относительно больше фосфора (от угара железа), чем исходный чугун. Вот почему для получения первоклассного металла для экспорта в Швеции берут в передел исключительно чистый в отношении Р чугун. Вынутую из горна готовую крицу разрубают на три части (каждая 50-55 кг) и обжимают их под молотом, придавая вид параллелепипеда.

Длительность процесса передела в шведском кричном горне - от 65 до 80 мин.; в сутки получается от 2,5 до 3,5 тонн обжатых кусков «на огонь», при расходе древесного угля всего 0,32-0,40 на единицу готового материала и выходе его от 89 до 93,5% заданного в передел чугуна. В самое последнее время в Швеции были произведены удачные опыты передела жидкого чугуна, взятого от доменных печей, и ускорения процесса кипения перемешиванием металла при помощи механических граблей; при этом угар снизился до 7%, а расход угля - до 0,25.

О химическом составе шведского и южно-уральского железа дают понятие следующие данные (в %):

Из всех родов железа, получаемых промышленными способами, шведское кричное наиболее приближается к химически чистому и вместо последнего применяется в лабораторной практике и исследовательских работах. От сыродутного железа оно отличается своей однородностью, а от самого мягкого мартеновского металла (литого железа) отсутствием марганца; ему свойственна высшая степень свариваемости, тягучести и ковкости. Шведское кричное железо обнаруживает незначительное временное сопротивление на разрыв - всего около 30 кг/мм 2 , при удлинении в 40% и уменьшении поперечного сечения в 75%. В настоящее время годовая производительность кричного железа в Швеции упала до 50000 т, так как после войны 1914-18 гг. область промышленных применений для этого железа сильно сократилась. Наибольшее количество его идет на изготовление (в Англии гл. обр. и в Германии) высших сортов инструментальной и специальной сталей; в самой Швеции из него делают специальную проволоку («цветочную»), подковные гвозди, хорошо кующиеся в холодном состоянии, цепи и полосовую заготовку для сварных труб. Для последних двух целей особенно важны свойства кричного железа: надежная свариваемость, а для труб, сверх того, высшая устойчивость против ржавления.

4) Развитие производства железа кричным процессом влекло за собой истребление лесов; после того как последние в различных странах были взяты под защиту закона, ограничившего их вырубку годовым приростом, Швеция, а затем и Россия - лесистые страны, изобилующие рудами высокого качества, - сделались главными поставщиками железа на международном рынке в течение всего 18 в. В 1784 г. англичанин Корт изобрел пудлингование - процесс передела чугуна на поду пламенной печи, в топке которой сжигался каменный уголь. После смерти Корта Роджерс и Голл ввели существенные улучшения в конструкцию пудлинговой печи, что способствовало быстрому распространению пудлингования во всех промышленных странах и совершенно изменило характер и размеры производства в них железа в течение первой половины 19 века. Этим процессом получили ту массу металла, которая понадобилась для постройки железных судов, железных дорог, локомотивов, паровых котлов и машин.

Топливом для пудлингования служит длиннопламенный каменный уголь, но там, где его нет, приходилось прибегать и к бурому углю, а у нас на Урале - к дровам. Сосновые дрова дают более длинное пламя, чем каменный уголь; оно хорошо греет, но содержание влаги в дровах не должно превосходить 12%. Впоследствии на Урале была применена к пудлингованию регенеративная печь Сименса. Наконец, в США и у нас (в Волжском и Камском бассейнах) пудлинговые печи работали на нефти, распыляемой в рабочее пространство печи непосредственно.

Для быстроты передела и уменьшения расхода топлива желательно иметь холодный пудлинговый чугун; при выплавке его на коксе, однако, в продукте получается много серы (0,2 и даже 0,3%), а при высоком содержании фосфора в руде - и фосфора. Для обыкновенных торговых сортов железа такой чугун с низким содержанием кремния (менее 1 %), под названием передельного, выплавлялся прежде в большом количестве. Древесноугольный чугун, который переделывался на Урале и в центральной России, не содержал серы и давал продукт, шедший и на изготовление кровельного железа. В настоящее время пудлингование служит для производства качественного металла по особым спецификациям, и потому в пудлинговые печи поступает не обыкновенный передельный чугун, а высококачественный, например, марганцовый или «гематит» (малофосфористый), или, наоборот, сильнофосфористый для производства гаечного железа. Ниже указано содержание (в %) главных элементов в некоторых сортах чугуна, применяемых для пудлингования:

Пудлинговая печь по окончании предыдущей операции обыкновенно имеет на поду нормальное количество шлака для работы со следующей садкой. При переработке сильно кремнистого чугуна шлака остается в печи много, и его приходится спускать; наоборот, белый чугун оставляет под печи «сухим», и работу приходится начинать заброской на под нужного количества шлака, который берут из-под молота («спелый», наиболее богатый магнитной окисью). На шлак забрасывается садка чугуна, подогретая в чугуннике (250-300 кг в ординарных и 500-600 кг в двойных печах); затем в топку забрасывают свежую порцию горючего, прочищают колосники, и в печи устанавливается полная тяга. В течение 25-35 мин. чугун плавится, претерпевая б. или м. значительное изменение в своем составе. Твердый чугун окисляется кислородом пламени, причем железо, марганец и кремний дают двойной силикат, стекающий на под печи; плавящийся чугун обнажает все новые и новые слои твердого чугуна, который тоже окисляется и плавится. В конце периода плавления на поду получаются два жидких слоя - чугуна и шлака, на поверхности соприкосновения которых происходит, хотя и в слабой степени, процесс окисления углерода магнитной окисью железа, о чем свидетельствуют выделяющиеся из ванны пузыри окиси углерода. Смотря по содержанию кремния и марганца в чугуне, в расплавленном металле их остается неодинаковое количество: в малокремнистом древесноугольном чугуне или белом - коксовой плавки - кремний в большинстве случаев выгорает при плавлении полностью; иногда же остается некоторое количество его в металле (0,3-0,25%), равно как и марганца. Фосфор тоже окисляется в это время, переходя в фосфорножелезную соль. От уменьшения веса металла при выгорании названных примесей %-ное содержание углерода может даже возрасти, хотя некоторое количество его несомненно сжигается кислородом пламени и шлаков, покрывающих первые порции расплавленного металла.

Для ускорения выгорания оставшихся количеств кремния, марганца и углерода прибегают к пудлингованию, т. е. перемешиванию чугуна со шлаком при помощи клюшки с загнутым под прямым углом концом. Если металл жидок (серый чугун, сильно углеродистый), то перемешивание не достигает цели, и ванну предварительно делают густой забрасыванием в нее холодного спелого шлака или же уменьшением тяги устанавливают в печи неполное горение, сопровождающееся получением сильно коптящего пламени (томление). Через несколько минут, в течение которых производят непрерывно перемешивание, на поверхности ванны появляются обильные пузыри горящей окиси углерода - продукта окисления углерода чугуна кислородом магнитной окиси, растворенной в основном железистом шлаке. По мере хода процесса окисление С усиливается и переходит в бурное «кипение» всей массы металла, которое сопровождается вспучиванием ее и таким значительным увеличением объема, что часть шлака переливается через порог рабочих отверстий. По мере выгорания С повышается температура плавления металла, и для того, чтобы кипение продолжалось, повышают непрерывно температуру в печи. Оконченное при низкой температуре кипение дает сырой товар, т. е. высокоуглеродистую губчатую массу железа, неспособную свариваться; в горячей печи «садится» спелый товар. Процесс окисления примесей железа в пудлинговой печи начинается за счет кислорода шлака, представляющего сплав однокремнеземика железа (Fe 2 SiО 4) с магнитной окисью и закисью железа переменного состава. В английских печах состав смеси окислов выражается формулой 5Fe 3 О 4 ·5 FeО; по окончании кипения отношение окислов в истощенном шлаке выражается формулой Fe 3 О 4 ·5FeО, т. е. в процессе окисления принимает участие 80% всей магнитной окиси шлака. Реакции окисления м. б. представлены следующими термохимическими уравнениями:

Как видно из этих уравнений, окисление Si, Р и Мn сопровождается выделением тепла и, следовательно, нагревает ванну, тогда как окисление С при восстановлении Fe 3 О 4 в FeO поглощает тепло и потому требует высокой температуры. Этим объясняется порядок удаления примесей железа и то, что выгорание углерода заканчивается скорее в горячей печи. Восстановления Fe 3 О 4 до металла не происходит, т. к. для этого требуется более высокая температура, чем та, при которой идет «кипение».

Севший «товар», для того чтобы стать хорошо сваривающимся железом, нуждается еще в пропаривании: товар оставляют на несколько минут в печи и от времени до времени переворачивают ломами, причем нижние его части кладут наверх; под совокупным действием кислорода пламени и шлаков, пропитывающих всю массу железа, углерод в это время продолжает выгорать. Как только получится некоторое количество хорошо сваривающегося металла, из него, избегая лишнего окисления, начинают накатывать крицы. Всего накатывают по мере поспевания товара от 5 до 10 криц (не более 50 кг каждая); крицы выдерживают (пропаривают) у порога в области высшей температуры и подают под молот для обжатия, чем достигается выделение шлака, и придания им формы куска (сечение от 10x10 до 15x15 см), удобной для прокатки в валках. На место выданных криц перемещаются передвижением вперед следующие за ними, до последней. Длительность процесса при производстве металла высшего качества (волокнистое железо) из спелого (высокоуглеродистого) древесноугольного чугуна была на Урале такова: 1) посадка чугуна - 5 мин., 2) плавление - 35 мин., 3) томление - 25 мин., 4) пудлингование (перемешивание) - 20 мин., 5) пропаривание товара - 20 мин., 6) накатка и пропаривание криц - 40 мин., 7) выдача криц (10-11 шт.) - 20 мин.; всего - 165 мин. При работе на белом чугуне, на обычное торговое железо, длительность процесса сокращалась (в 3ападной Европе) до 100 и даже 75 мин.

Что касается результатов работы, то в разных металлургических районах они менялись в зависимости от рода топлива, качества чугуна и сорта производимого железа. Уральские печи, работавшие на дровах, давали выход годного железа на 1 м 3 дров от 0,25 до 0,3 т; расход нефти у нас на единицу железа - 0,3З, каменного угля в европейских печах - от 0,75 до 1,1. Суточная производительность наших больших печей (садка чугуна 600 кг) при работе на сушеных дровах была 4-5 т; выход материала, пригодного для производства кровельного железа, составлял 95-93% количества поступившего в передел чугуна. В Европе суточная производительность обыкновенных печей (садка 250-300 кг) - около 3,5 т при угаре в 9%, а для высококачественного железа - 2,5 т при угаре в 11%.

По химическому составу и физическим свойствам пудлинговое железо является гораздо худшим продуктом, чем кричное, с одной стороны, и литое мартеновское - с другой. Изготовлявшиеся прежде в 3ападной Европе обыкновенные сорта железа содержали много серы и фосфора, т. к. вырабатывались из нечистых коксовых чугунов, а обе эти вредные примеси только частью переходят в шлак; количество шлака в пудлинговом железе - 3-6%, в качественном металле оно не превосходит 2%. Присутствие шлака сильно понижает результаты механических испытаний пудлингового железа. Ниже приведены некоторые данные в %, характеризующие пудлинговое железо - обыкновенное зап.-европейское и хорошее уральское:

Ценным свойством, ради которого и поддерживается теперь производство пудлингового железа, является его прекрасная свариваемость, имеющая иногда особое значение с точки зрения безопасности. Спецификациями ж.-д. обществ предписывается изготовление из пудлингового железа сцепных устройств, тяг для переводных стрелок и болтов. Благодаря лучшему сопротивлению разъедающему действию воды, пудлинговое железо идет также для производства водопроводных труб. Из него же изготовляют гайки (фосфористый крупнозернистый металл) и высококачественное волокнистое железо для заклепок и цепей.

Строение сварочного железа, обнаруживаемое под микроскопом даже при слабом увеличении, характерно присутствием на фотографическом изображении черных и светлых составляющих; первые принадлежат шлаку, а вторые - зернам или волокнам железа, полученным при вытяжке металла.

Железо торговое

Металлургические заводы изготовляют для нужд промышленности железо двух главных видов: 1) листовое и 2) сортовое.

Листовое железо прокатывается в настоящее время до 3 м ширины; при толщине 1-З мм оно называется у нас тонкокатальным; от 3 мм и выше (обычно до 40 мм) - котельным, резервуарным, корабельным, смотря по назначению, которому соответствуют состав и механические свойства материала. Наиболее мягким является котельное железо; оно содержит обыкновенно 0,10-0,12% С, 0,4-0,5% Mn, Р и S - каждого не более 0,05%; временное сопротивление его на разрыв не д. б. больше 41 кг/мм 2 (но и не меньше 34 кг/мм 2), удлинение при разрыве - около 28%. Резервуарное железо выделывается более твердым и прочным; оно содержит 0,12-0,15% С; 0,5-0,7% Мn и не более 0,06% как Р, так и S; сопротивление разрыву 41-49 кг/мм 2 , удлинение 25-28%. Длина листов котельного и резервуарного железа устанавливается заказом сообразно размерам изделия, склепываемого из листов (избегая лишних швов и обрезков), но обыкновенно она не превышает 8 м, так как ограничивается для тонких листов их быстрым охлаждением вовремя процесса прокатки, а для толстых - весом слитка.

Листовое железо менее 1 мм толщины называется черной жестью; оно служит для изготовления белой жести и как кровельный материал. Для последней цели в СССР прокатывают листы размерами 1422x711 мм, весом 4-5 кг, при толщине 0,5-0,625 мм. Кровельное железо выпускается заводами в пачках весом по 82 кг. За границей черная жесть классифицируется в торговле по номерам специального калибра - от 20-го до 30-го (нормальная толщина германской жести от 0,875 до 0,22 мм, а английской - от 1,0 до 0,31 мм). Жесть изготовляется из самого мягкого литого железа, содержащего 0,08- 0,10% С, 0,3-0,35% Мn, если оно изготовляется из чугуна древесноугольной плавки (у нас), и 0,4-0,5% Мn, если исходным материалом служат коксовый чугун; сопротивление разрыву - от 31 до 34 кг/мм 2 , удлинение - 28-30%. Разновидностью листового железа является волнистое (гофрированное) железо. Оно разделяется по характеру волн на железо с низкими и высокими волнами; в первом - отношение ширины волны к глубине колеблется от 3 до 4, во втором 1-2. Волнистое железо делают толщиной 0,75-2,0 мм и шириной листов 0,72-0,81 м (с низкими волнами) и 0,4-0,6 м (с высокими волнами). Волнистое железо употребляется для кровель, стен легких сооружений, жалюзи, а с высокими волнами, кроме того, идет для постройки бесстропильных перекрытий.

Сортовое железо делится по форме поперечного сечения на два класса: обыкновенное сортовое железо и фасонное.

К первому классу относится железо круглое (при диаметре менее 10 мм называемое проволокой), квадратное, плоское или полосовое. Последнее, в свою очередь, делится на: собственно полосовое - шириной от 10 до 200 мм и толщиной более 5 мм; обручное - той же ширины, но толщиной от 5 до 1 мм, указываемой № калибра (от 3-го до 19-го нормального германского и от 6-го до 20-го нового английского калибра); шинное - от 38 до 51 мм шириной и до 22 мм толщиной; универсальное - от 200 до 1000 мм шириной и не менее 6 мм толщиной (прокатывается в особых валках - универсальных). Как шинное, так и обручное железо выпускается заводами скатами, катаная проволока - мотками; остальные сорта - в виде прямых (правленных) полос, обычно не более 8 м длиной (нормально - от 4,5 до 6 м), но по специальному заказу для бетонных конструкций полосы нарезаются до 18 мм длиной, а иногда и более.

Главнейшие виды фасонного железа: угловое (равнобокое и неравнобокое), коробчатое (швеллерное), тавровое, двутавровое (балки), колонное (квадратное) и зетовое железо; существуют также и некоторые другие менее распространенные виды фасонного железа. По нашему нормальному метрическому сортименту размеры фасонного железа указываются № профиля (№ - число см. ширины полки или наибольшей высоты профиля). Угловое неравнобокое и тавровое железо имеют двойной №; напр., № 16/8 означает угловое с полками в 16 и 8 см или тавровое с полкой в 16 см и высотой тавра 8 см. Наиболее тяжелые профили катаемого у нас фасонного железа: № 15 - углового, № 30 - корытного, № 40 - двутаврового.

Состав обыкновенного сваривающегося сортового железа: 0,12% С, 0,4% Мn, менее 0,05% Р и S - каждого; сопротивление его разрыву 34-40 кг/мм 2 ; но круглое железо для заклепок изготовляется из более мягкого материала состава: менее 0,10% С, 0,25- 0,35% Мn, около 0,03% Р и S - каждого. Сопротивление разрыву 32-35 кг/мм 2 , а удлинение 28-32%. Фасонное не свариваемое, а склепываемое железо («строительная сталь») содержит: 0,15 - 0,20% С, 0,5% Мn, до 0,06% Р и S - каждого; его сопротивление разрыву 40-50 кг/мм 2 , удлинение 25-20%. Для производства гаек изготовляется железо (томасовское), содержащее около 0,1% С, но от 0,3 до 0,5% Р (чем крупнее гайки, тем больше Р). За границей для удовлетворения нужд специальных прокатных заводов в торговле обращается полупродукт - квадратная заготовка, обыкновенно 50 х 50 мм в поперечном сечении.

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.