Расчет спринклерного пожаротушения. Ошибки в проектах водяного пожаротушения

Гидравлический расчет спринклерной или дренчерной сети имеет своей целью:

Определение расхода воды, т.е. интенсивности орошения или удельного расхода, у "диктующих" оросителей (наиболее удаленных или высоко расположенных);

Сравнение удельного расхода (интенсивности орошения) с требуемым (нормативным), а также определение необходимого давления (напора) у водопитателей и наиболее экономных диаметров труб.

Подробная методика расчета гидравлических сетей спринклерных и дренчерных установок пожаротушения водой и водными растворами, агрегатных АУП тонкораспыленной водой, АУП с принудительным пуском и спринклерно-дренчерных АУП приведена в приложении В. Ответственным этапом гидравлического расчета является выбор оросителя и определение давления, которое необходимо обеспечить у "диктующего" оросителя.

При определении параметров оросителя необходимо учитывать некоторые технические характеристики, которыми являются:

Расход огнетушащего вещества;

Интенсивность орошения;

Максимальная площадь орошения, в пределах которой обеспечивается требуемая интенсивность, расстояние между оросителями.

Расход оросителя Q (дм3/с) определяется по формуле:

где К - коэффициент производительности,

Р - давление перед оросителем, МПа.

Важнейший параметр - коэффициент производительности, то есть способность оросителя пропустить через себя определенное количество воды, в свою очередь, зависит от величины выходного отверстия оросителя: чем больше отверстие, тем больше коэффициент.

Для вычисления расхода Q, нужно определить необходимое давление Р у оросителя при заданной интенсивности орошения.

Один из способов определения необходимого давления у оросителя, это определение давление по графику зависимости интенсивности орошения оросителей от давления (рис. 4.1), приведенный в технической документации. По графику, по определенной интенсивности и выбранному диаметру условного прохода оросителя определяют необходимое минимальное давление.

Как видно из графика для интенсивности орошения 0,12 дм 3 /м 2 подходят три типа оросителя - «СВН-К115», «СВН-К80» и «СВН-К57». Выбирают ороситель, который обеспечивает заданную интенсивность при меньшем давлении, в нашем случае это «СВН-К115» по паспорту CBO0-PHо(д)0,59-R1/2/P57.B3 - (диаметр выходного отверстия 15мм., коэффициент производительности К = 0,59). При выборе оросителя нужно, также учитывать, что минимальное давление у большинства оросителей, при котором обеспечивается работоспособность оросителя, согласно паспортным данным 0,1 Мпа.

Ороситель «СВН-К115» обеспечивает интенсивность орошения 0,12 дм 3 /м 2 при давлении 0,17 МПа (рис. 4.1).


Рис. 4.1. График зависимости интенсивности орошения оросителей от давления.

Согласно расчет расхода установки определяют из условия одновременной работы всех спринклерных оросителей смонтированной на защищаемой диктующей площади, определенной по таблице 5.1-5.3, с учетом того обстоятельства, что расход оросителей, установленных вдоль распределительных труб, возрастает по мере удаления от "диктующего" оросителя. При этом общая защищаемая площадь может быть во много раз больше, а количество оросителей - достигать 800 или 1200 при использовании сигнализаторов потока жидкости.

Расстановка оросителей производится с учетом максимального расстояния, рассчитывается расход воды в пределах защищаемой диктующей площади установленной в таблице 5.1. Производится проверка расчета распределительной сети спринклерной АУП из условия срабатывания такого количества оросителей, суммарный расход которых на принятой защищаемой орошаемой площади составят не менее нормативных значений расход огнетушащего вещества приведенный в таблицах 5.1-5.3. Если при этом расход будет менее указанной в таблицах 5.1-5.3, то расчет должен быть повторен при увеличении количестве числа оросителей и диаметров трубопроводов распределительной сети. Пересчет сети, может повторятся многократно.

Авторами пособия, для упрощения, при произведении гидравлического расчета в учебных целях, предлагается определять количество оросителей для защиты минимальной диктующей площади и их расстановки по формуле:

где q 1 — расход ОТВ через диктующий ороситель, л/с;

Q н — нормативный расход спринклерной АУП согласно таблицам 5.1-5.3 СП-5.13130.2009

В результате этого допущения, итоговый расчетный расход на 10-15% будет превышать нормативный, но сам расчет значительно упрощается.

Для примера произведем расстановку оросителей автоматической установки водяного пожаротушения текстильного предприятия с параметрами установки:

Интенсивность орошения водой - 0,12 л/(с*м 2);

Расход огнетушащего вещества - не менее 30 л/с;

Минимальная площадь орошения - не менее 120 м 2 ;

Максимальное расстояние между оросителями - не более 4 м;

Минимальное давление, которое необходимо обеспечить у диктующего оросителя Р = 0.17 Мпа (Рис.4.1.);

Расчетный расход воды через диктующий ороситель, расположенный в диктующей защищаемой орошаемой площади, определяется по формуле:

K — коэффициент производительности оросителя, принимаемый по технической документации на изделие, л/(с·МПа 0,5);

Минимальное расчетное количество оросителей необходимое для защиты диктующей площади:

где Q н = 30 л/с — нормативный расход спринклерной АУП согласно таблицам 5.1.

Расстановка оросителей, на выделенной минимальной диктующей площади представлена на рис. 4.2. При расстановке необходимо учитывать, что расстояние между оросителями не должно превышать нормативные расстояния указанные в таблицах 5.1.

Рис. 4.2 Схема размещения оросителей

Дальнейший расчет установки связан с определением:

Диаметров трубопроводов;

Давления в узловых точках;

Потерь давления в трубопроводах, узле управления и запорной арматуре;

Расхода на последующих от диктующего оросителях в пределах защищаемой площади;

Определение суммарного расчетного расхода установки.

Для наглядности трассировка трубопроводной сети по объекту защиты изображается в аксонометрическом виде (рис. 4.3).

Рис.4.3 Аксонометрический вид спринклерной установки водяного пожаротушения по симметричной тупиковой схеме

Компоновка оросителей на распределительном трубопроводе АУП согласно может выполнятся по тупиковой или кольцевой схеме, симметричная и несимметричная. На рис. 4.3 представлена спринклерная установка водяного пожаротушения по симметричной тупиковой схеме, на рис. 4.4. по кольцевой несимметричной схеме.

Рис.4.4 Аксонометрический вид спринклерной установки водяного пожаротушения по несимметричной кольцевой схеме

Диаметр трубопроводов может назначаться проектировщиком либо рассчитываться по формуле:

где d — диаметр определяемого участка трубопровода, мм;

Q — расход на определяемом участке трубопровода, л/с;

v — скорость движения воды, должна составлять не более 10 м/с, а во всасывающих — не более 2,8 м/с;

Потери давления на участке трубопровода определяется по формуле:

где L - длина трубопроводного участка в котором рассчитываются потери давления;

К т удельная характеристика трубопровода, определяется по таблице В.2 Приложения В.

После определения давления в точке а (рис.4.3) и суммарного расхода оросителей первого рядка определяется обобщенная характеристика первого рядка по формуле:

Поскольку второй и третий рядки идентичны первому, после расчета потерь давления между первым и вторыми рядками, обобщенная характеристика используется для определения расхода второго рядка. Расход третьего рядка рассчитывается аналогично.

Давление пожарного насоса, по схеме, представленной на рис. 4.3, складывается из следующих составляющих:

где Р е — требуемое давление пожарного насоса, МПа;

Р в-г — потери давления на горизонтальном участке трубопровода, МПа;

Р г-д — потери давления на вертикальном участке трубопровода, МПа;

Р М — потери давления в местных сопротивлениях (фасонных деталях), МПа,;

Р уу — местные сопротивления в узле управления (сигнальном клапане, задвижках, затворах), МПа;

Р в — давление у диктующей защищаемой площади, МПа;

Z — пьезометрическое давление (геометрическая высота диктующего оросителя над осью пожарного насоса), Мпа; Z = Н /100;

P ВХ — давление на входе пожарного насоса (определяется согласно варианту), Мпа.

Спринклерная система водяного пожаротушения практична и функциональна. Она применяется в рамках развлекательных объектов, хозяйственных и производственных построек. Основная особенность спринклерных линий — наличие оросителей с полимерными вставками. Под воздействием высоких температур вставка сплавляется, активируя процесс пожаротушения.

Схема спринклерной системы пожаротушения

В состав типовой системы входят следующие элементы.

  • Управляющие модули.
  • Трубопровод.
  • Спринклерные оросители.
  • Управляющий модуль.
  • Задвижки.
  • Импульсный модуль.
  • Компрессорное оборудование.
  • Измерительные приборы.
  • Насосная установка.

При расчете систем тушения пожара учитываются параметры помещения (площадь, высота потолков, планировка), предписания отраслевых нормативов, требования технического задания.

Расчет спринклерных установок водяного пожаротушения должны осуществлять квалифицированные специалисты. Они располагают профильными измерительными приборами и необходимым программным обеспечением.

Преимущества системы

Спринклерные системы пожаротушения обладают множеством достоинств.

  • Автоматическое срабатывание при возникновении возгорания.
  • Простота основных рабочих схем.
  • Сохранение эксплуатационных характеристик на протяжении длительного срока.
  • Удобство обслуживания.
  • Приемлемая стоимость.

Недостатки системы

К минусам спринклерных систем относится.

  • Зависимость от штатной линии подачи воды.
  • Невозможность применения на объектах с высокой степенью электрификации.
  • Сложности при использовании в условиях отрицательных температур (требуется применение воздушно-водных решений).
  • Непригодность оросителей к повторному использованию.

Пример расчета спринклерной установки водяного пожаротушения

Гидравлический расчет спринклерной системы пожаротушения позволяет определить рабочие показатели давления, оптимальный диаметр трубопровода и производительность линии.

При расчете спринклерного пожаротушения в части расхода воды используется следующая формула:

Q=q p *S, где:

  • Q — производительность оросителя;
  • S — площадь целевого объекта.

Расход воды измеряется в литрах в секунду.

Расчет производительности оросителя производится по формуле:

q p = J p * F p , где

  • J p — интенсивность орошения, установленная нормативными документами, в соответствии с типом помещения;
  • F p — площадь покрытия одного спринклера.

Коэффициент производительности оросителя представлен в виде числа, не сопровождается единицами измерения.

При расчете системы инженеры определяют диаметр выходных отверстий оросителей, расход материалов, оптимальные технологические решения.

Если вам требуется расчет спринклерной системы пожаротушения, обратитесь к сотрудникам «Теплоогнезащита». Специалисты быстро справятся с задачей, предоставят рекомендации по решению типовых и нестандартных вопросов.

Цель гидравлического расчета — определение расхода воды на пожаротушение, диаметров распределительных, питающих и подводящих трубопроводов и необходимого требуемого давления и расхода для насосной установки.

Гидравлический расчет выполнен по техническим данным представленным в (Гидравлическая схема расчета параметров)

Параметры установки пожаротушения торгового центра и других помещениях в подтрибунных пространствах принято в соответствии с требованиями СТУ:

— помещения объекта относятся к I группе помещений;

— интенсивность орошения — 0,12 л/(с·м 2);

— минимальная площадь для расчета расхода воды — 120 м 2 ;

— продолжительность подачи воды — 60 мин;

— максимальная площадь, защищаемая одним оросителем — 12 м 2 ;

— расход воды на внутреннее пожаротушение здания от пожарных кранов составляет 2 струи с расходом каждой не менее 5 л/с.

Рабочей документацией предусмотрена защита от пожара автоматической установкой водяного пожаротушения со спринклерными оросителями RA1325 Reliable с коэффициентом производительности 0,42.

На магистральной сети трубопровода предусмотрен монтаж пожарных кранов на питающих и распределительных трубопроводах диаметром DN 65. Расстановка пожарных кранов выполнена с учетом орошения каждой точки защищаемых помещений двумя струями с высотой компактной струи не менее 12 м для помещений здания. При этом расход от одного пожарного крана составляет не менее 5,2 л/с, а требуемый напор у пожарного крана — не менее 19,9 м. вод. ст. (согласно табл. 3 СП10.13130.2009).

Трубопроводы установки пожаротушения выполнены из электросварных и водогазопроводных труб по ГОСТ 10704-91 и ГОСТ 3262-75 различного диаметра.

Источником холодного водоснабжения проектируемого объекта является проектируемый водовод. Напор в существующей сети водопровода равен 2,6 атм. (26,0 м).

Расчетная площадь для определения параметров насосной станции пожаротушения принята на отм.+21,600 (6 этаж), расположение распределительного трубопровода на отм.+28,300 (под перекрытием) с монтажным положением оросителей вертикально вверх. Участок принят для расчета по причине того, что является наиболее удаленным, тупиковым и высоко поднятым по отношению к другим участкам данной секции.

Внутренний противопожарный водопровод выполнен совмещенным со спринклерным водяным пожаротушением, общая насосная группа.

Для определения параметров насосной станции пожаротушения принято расположение основания для пожарных насосов на отм.-0,150 (1 этаж).

Максимальное расстояние между спринклерами 2,7-3,0 м (в форме квадрата с учетом технических требований и эпюры орошения или прямоугольной формы с соблюдением охвата орошения). Диаметр окружности, защищаемая одним оросителем 4,0м, соответственно один ороситель защищает площадь 12,5 м2.

Свободный напор в наиболее удаленном и высокорасположенном оросителе должен быть не менее 12 м (0,12 МПа). Расход через диктующий ороситель
Qmin = k√ Н = 0,42√12 =1,455 л/с.

На защищаемой площади 120 м2 требуется не менее 16 (120/(2,76*2,76)) оросителей, минимальная интенсивность орошения 0,12 л/(с·м 2), тогда расход воды каждого оросителя должен составить: л/с, где м 2 — площадь орошения, — число оросителей, л/(с·м 2) — нормативная интенсивность орошения.

Гидравлический расчет системы автоматического пожаротушение

Расчет производится для тупиковой не симметричной схемы.

Гидравлический расчет для подбора моноблочной насосной установки произведен в соответствии с Приложением В СП 5.13130.2009.

Основные показатели гидравлического расчета, представлены в таблице 1.

Таблица 1 Гидравлический расчет

№ участка Длина участка

L, м

Ду, мм Удельная харак-ка

тр-да, Кт

Коэф-нт производ. оросителя, k, л/с·м² Напор Н, м.вод.ст. РасходQ, л/с
Q=k √ Н
Потери участка, м.вод.ст. Hι=Q²*L/Кт Участок 1-тупик-й 2-кольц-й Скорость фактич. V, м/с
Рядок А ветвь а1-а2 (1 ороситель)
1а — диктующий ороситель 0,42 12,0 1,455
уч. а1-а2 5,0 25 3,65 0,42 1,455 2,900 1
Геометр. высота оросителя а1от а2 (с отм.+22,500 м на отм.+24,000м) -1.50
Требуемый напор и расход в т.а2 13,40 1,537
уч. а2-А 5,0 25 3,65 0,42 2,992 12,26 1
Геометр. высота оросителя а2 от магистрали (с отм.+24,000 м на отм.+28,300м) -4.30
Рядок Е ветвь е1-Е
1е — ороситель 0,42 12,0 1,455
уч. е1-е2 4,7 25 3,65 0,42 1,455 2.726 1
Геометр. высота оросителя е1от е2 (с отм.+22,500 м на отм.+24,000м) -1.50
Требуемый напор и расход в т.е2 13,226 1,530
уч. е2-Е 5,0 25 3,65 0,42 2,985 12,206 1
Геометр. высота оросителя е2 от магистрали (с отм.+24,000 м на отм.+28,300м) -4.30
Требуемый напор и расход в т.Е ’ 21,131

В е1-Е =Q е1-Е 2 /Р Е ’ =2,985 2 /21,131=0,422

расход на уч-ке е1-Е: Q е1-Е =(В е1-Е * Р Е) 0.5 =(0,422* 21,758) 0.5 3,030
Магистраль А-К
Требуемый напор и расход в т.А 21,36 1,941
Уч.А-Б 3,0 100 4231 0,42 4,933 0,017
Требуемый напор и расход в т.Б 21,377 1,942
Уч.Б-В 2,5 100 4231 0,42 6,875 0,028
Требуемый напор и расход в т.В 21,405 1,943
Уч.В-Г 1,1 100 4231 0,42 8,818 0,020
Требуемый напор в т.Г 21,425
Требуемый напор и расход на уч-ке Г1-Г 21,425
Гидравлическая характеристика

В г1-Г = Q г1-Г 2 /Р г =2,992 2 /21,36=0,419

расход на уч-ке Г1-Г: Q г1-Г =(В г1-Г * Р г) 0.5 =(0.419* 21,425) 0.5 2,996
Уч.Г-Д 1,4 100 4231 0,42 11,814 0,046
Требуемый напор и расход в т.Д 21,471 1,946
Уч.Д-Д1 2,5 100 4231 0,42 13,760 0,112
Требуемый напор и расход в т.Д1 21,583 1,951
Уч.Д1-Д2 2,5 100 4231 0,42 15,711 0,146
Требуемый напор и расход в т.Д2 21,729 1,958
Уч.Д2-Е 0,4 100 4231 0,42 17,669 0,029
Требуемый напор и расход в т.Е 21,758
Уч.Е-Ж 1,0 100 4231 0,42 20,699 0,101
Требуемый напор и расход в т.Ж 21,859
Уч.Ж-Ж1 0,9 125 13190 0,42 25,899 0,046
Требуемый напор и расход в т.Ж1 21,905
Уч.Ж1-Ж2 0,2 125 13190 0,42 31,099 0,015
Требуемый напор и расход в т.Ж2 21,92 1,966
Уч.Ж2-Ж3 2,5 125 13190 0,42 33,065 0,207
Требуемый напор и расход в т.Ж3 22,127 1,976
Уч.Ж3-И 2,0 125 13190 0,42 35,041 0,186
Требуемый напор и расход в т.И 23,313
Гидравлическая характеристика

В и1-и = Q и1-и 2 /Р и ’ =2,985 2 /21,131=0,422

расход на уч-ке и1-и: Q и1-и =(В и1-и * Р и) 0.5 =(0,422* 23,313) 0.5 3,136
Уч.И-К 127,10 125 13190 0,42 38,177 14,044
Т.К 37,357 38,177
Внутренний противопожарный водопровод (2х5,2 л/с)
ПК6(1)
уч.Ж-ПК6(1) 7,7 65 572 19,90 5,200 0,364 1
Разница высоты на уч. Ж-ПК6(1) составляет: -5.45
Расход и давление перед пожарным краном ПК6(1) составит (перед диафрагмой): 29,429
Расход перед ПК после установки шайбы: 5,200
ПК6(2)
уч.И-ПК6(2) 7,7 65 572 19,90 5,200 0,364 1
Разница высоты на уч. И-ПК6(2) составляет: -5,45
Расход и давление перед пожарным краном ПК6(2) составит: 29,477
Давление перед ПК не превышает 0,4МПа
На ПК устанавливается диафрагма (дроссельная шайба), диаметр отверстия шайбы 20,4 мм
Давление и расход перед ПК после установки шайбы: 5,2
Питающий трубопровод
т.К 37,357 38,177
уч. К-УУ 63,15 150 28690 38,177 3,208
УУ 40,565 38,177
Потери давления в УУ 0,00018 0,262
Потери общие составляют: 30,157
Местные сопротивления 20% 6,031
Геометр. высота дикт. оросителя относительно УУ с отм.1,45 на отм. 22.500 21,050
Результаты расчета до УУ
Требуемый напор секции (перед УУ) 67,908 м
Требуемый расход секции на 120 м 2 38,177 л/с 137,44 м 3 /ч
Всего оросителей 16 шт оросителей на площади
Защищаемая площадь 120 м 2
На 1 ороситель 7,500 м 2
Интенсивность орошения 0,318 л/(с · м 2) результат расчета
Подводящий трубопровод до УУ
т.УУ 67,908 38,177
уч. УУ-G 0,8 150 28690 38,177 0,0406
т.G 67,949 38,177
уч. G-H 11,45 200 209900 38,177 0,079
т.H 68,028 38,177
уч. H-F 0,97 100 4231 38,177 0,334 1 4,8
т.F 68,362 38,177
Геометр. высота оси насоса относительно УУ с отм.+0.27 на отм.+1.45 1,18
Потери в насосе 1,0
Местные сопротивления от насоса до УУ 20% 0,091 м
Давление в конце участка трубопровода (за насосом) 70,633 м
Всасывающий трубопровод
Давление перед врезкой всасыв. труб-да (Нвс) от ввода ВК 26 м
Рассматривается участок на пропуск расхода на один ввод, V не д/превышать 2,8 м/с до патрубков насосной установки
уч.»Ввод»-F 25,00 200 209900 38,177 0,173 1 1,2
т.F 25,827 38,177
уч. F-Z 0,57 100 4231 38,177 0,196 1 4,8
Местные сопротивления до насоса 20% 0,074
Давление на входе пожарного насоса (Н подпора) 25,557 м
Результат расчетов параметров системы:
Q системы = 38,177 л/с Q пожарного насоса = 137,44 м 3 /ч
P системы = 0,4508 МПа Н пожарного насоса = 45,08 м.вод.ст.

Интенсивность орошения защищаемой площади с учетом орошения зоны спринклера совместно с соседними спринклерами по результатам расчетов получена i=0,318 л/(с · м2), что обеспечивает требуемую интенсивность i=0,12 л/(с · м2).

Производительность моноблочной насосной установки на отм. -0,150 в пом.Г.1.79 (Насосная ВПТ) 1-го этажа принята из условия обеспечения основным пожарным насосом расхода воды Q » 137,5 м3/ч и давления подачи Н=46,0м (эта цифра из графика насоса Q-H), жокей-насос принят с расходом воды Q » 5,45 м3/ч и давления подачи Н=54,4 м.

Данный расчет Вы можете скачать бесплатно (для личного пользования):

  • расчет в формате Word —
  • принципиальная расчетная схема в формате ПДФ —

Информация на сайте является интеллектуальной собственностью. Просьба ее не распространять на других сайтах.