Обзор характеристик люминесцентных ламп. Люминесцентные лампы. Лампы дневного света


Разновидности и характеристики

Классификация люминесцентных ламп

Люминесцентные лампы (ЛЛ) делятся на осветительные общего назна- чения и специальные. К ЛЛ общего назначения относят лампы мощнос- тью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классифика- ции ЛЛ специального назначения используют различные параметры. По мощ- ности их разделяют на маломощные (до 15 Вт) и мощные (свыше 80 Вт); по типу разряда - на дуговые, тлеющего разряда и тлеющего свечения; по излучению - на лампы естественного света, цветные лампы, лампы со специальными спектрами излучения, лампы ультрафиолетового излучения; по форме колбы - на трубчатые и фигурные; по светораспределению - с ненаправленным светоизлучением и с направленным, например, рефлек- торные, щелевые, панельные и др.

У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, стоит буква Ц, а при цветопередаче особо высокого качества - буквы ЦЦ. Маркировка ламп тлеющего разряда начинается с букв ТЛ.

Разновидности спектрального состава люминесцентных ламп

Спектральный состав видимого излучения зависит от состава люминофо- ра, в соответствии с чем лампы обозначают буквами. Различную цветность можно получить с помощью люминофора - галофосфата кальция в зависи- мости от цветовой температуры лампы.

Цветовой температурой называется температура абсолютно черного тела, при которой цвет его излучения совпадает с цветом самого тела (К - Кельвин, Т = t + 273, где Т - температура в К, t - температура в °С).

По спектру излучаемого света лампы подразделяются:

ЛБ - лампы белого света с цветовой температурой 4200 К, соответству- ющей цветовой температуре яркого солнечного дня;

ЛХБ - лампы холодно-белого света с цветовой температурой 4800 К;

ЛТБ - лампы тепло-белого света с цветовой температурой 2800 К, соответствующей цветности излучения ламп накаливания;

ЛД - лампы дневного света, имеющие цветовую температуру 6500 К, соответствующую цветовой температуре голубого неба без солнца.

Для осветительных установок, в которых требуется правильная цветопере- дача, выпускаются лампы:

ЛЕЦ - лампы естественного (Е) цвета; ЛТБЦ - лампы тепло-белого (ТБ) цвета; ЛДЦ - лампы дневного (Д) цвета.

Стоящие после обозначения цифры указывают мощность лампы в ваттах. Люминесцентные лампы выпускаются мощностью 8... 150 Вт.

Пример 1. ЛТБ 30 означает: люминесцентная, тепло-белого цвета, мощ-ность 30 Вт. Пример 2. ЛБ 20 обозначает: люминесцентная лампа белого цвета мощнос-тью 20 Вт.

Световой поток после 70% средней продолжительности горения снижает-ся до 70% среднего номинального потока. Наиболее долго лампы служат при комнатной температуре и номинальном напряжении. Повышение и понижение напряжения снижают срок службы, но к повышениям напряжения люминесцентные лампы значи- тельно менее чувствительны, чем лам пы накаливания. Люминесцентные лампы показаны на рис. 14.5.

Раньше их называли: прямыми (рис. 14.5.а); . кольцевыми (рис. 14.5.6); « U -образными (рис. 14.5.в).

Эти названия нашли отражение в старых обозначениях светильников для люминесцентных ламп. В настоя-щее время все лампы, кроме прямых, называют фигурными (рис. 14.5.б,в).

Технические характеристики наиболее распространенных ламп Таблица 14.1

Тип лампы

Мощность, Вт

Световой поток, лм

Продолжительность горения, ч

Тип цоколя

Лампы люминесцентные р тутные низкого давления

Ц2Ш-13/35

ЛДЦ-40

ЛДЦ-80

ЛТБ-40

ЛТБ-80

ЛХБ-40

ЛХБ-80

С.И. Паламаренко, г Киев

Классификация люминесцентных ламп, характеристики обычных люминесцентных ламп, зависимость параметров ламп от напряжения сети, зависимость характеристик от окружающей температуры и условий охлаждения, изменение характеристик люминесцентных ламп в процессе горения, энергоэкономичные люминесцентные лампы, зарубежные люминесцентные лампы, компактные люминесцентные лампы, безэлектродные люминесцентные лампы.

Классификация люминесцентных ламп

Люминесцентные лампы (ЛЛ) делятся на осветительные общего назначения и специальные. К ЛЛ общего назначения относят лампы мощностью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классификации ЛЛ специального назначения используют различные параметры. По мощности их разделяют на маломощные (до 15 Вт) и мощные (свыше 80 Вт); по типу разряда на дуговые, тлеющего разряда и тлеющего свечения; по излучению на лампы естественного света, цветные лампы, лампы со специальными спектрами излучения, лампы ультрафиолетового излучения; по форме колбы на трубчатые и фигурные; по светораспределению с ненаправленным светоизлучением и с направленным (рефлекторные, щелевые, панельные и др.).

Маркировка обычно состоит из 2-3 букв. Первая буква Л означает люминесцентная. Следующие буквы означают цвет излучения: Д - дневной; ХБ - холодно-белый; Б - белый; ТБ - теплобелый; Е - естественно-белый; К, Ж, 3, Г, С - соответственно красный, желтый, зеленый, голубой, синий; УФ - ультрафиолетовый. У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, стоит буква Ц, а при цветопередаче особо высокого качества - буквы ЦЦ. В конце ставят буквы, характеризующие конструктивные особенности: Р - рефлекторная, У - U-образная, К - кольцевая, А - амальгамная, Б - быстрого пуска. Цифры обозначают мощность в ваттах. Маркировка ламп тлеющего разрада начинается с букв ТЛ.

Характеристики обычных ЛЛ

В табл.1 приведены характеристики наиболее распространенных ЛЛ дневного света. Обозначения: Р - мощность; U -напряжение на лампе; I - ток лампы; R -световой поток; S - световая отдача.

Зависимость параметров ламп от напряжения сети

При изменении напряжении сети в пределах + 10% изменение параметров лампы можно определить из соотношения dX/X = Nx dUc/Uc, где X - соответствующий параметр лампы; dX - его изменение; Nx - коэффициент для соответствующего параметра. Для схемы с дросселем коэффициенты имеют следующие значения: для силы света Ni = 2,2; для мощности Np = 2,0; для светового потока Nф = 1,5. В схеме с емкостно-индуктивным балластом величины Nx несколько меньше.

При падении напряжения сети ниже допустимого ухудшаются условия перезажигания. Повышение напряжения выше допустимого вызывает перекал катодов и перегрев пускорегулирующих устройств. И в том, и в другом случае происходит значительное сокращение срока службы ламп.


Таблица 1

Размеры, мм (рис.1) L1 L2 D

1199,4 1214,4 38

1199,4 1214,4 38

1199,4 1214,4 38

1199,4 1214,4 38

1199,4 1214,4 38

Зависимость характеристик от окружающей температуры и условий охлаждения

Изменение температуры трубки по сравнению с оптимальной как в сторону увеличения, так и в сторону уменьшения, вызывает снижение светового потока, ухудшение условий зажигания и сокращение срока службы. Надежность зажигания стандартных ламп при работе со стартерами начинает особенно заметно падать при температурах ниже -5°С и при понижении напряжения сети. Например, при -10°С и напряжении сети 180 В вместо 220 В число незажигающихся ламп может доходить до 60-80%. Такая сильная зависимость делает применение ЛЛ в помещениях с низкими температурами неэффективным.

Повышение температуры относительно оптимальной может происходить при повышении температуры окружающей среды и при работе ламп в закрытой арматуре. Перегрев ЛЛ кроме уменьшения светового потока сопровождается некоторым изменении их цвета. На рис.2 показана зависимость параметров ЛЛ от температуры окружающей среды.

Изменение характеристик ЛЛ в процессе горения

В первые часы горения происходит некоторое изменение электрических характеристик ламп, связанное с доактивиров-кой катодов, выделением и поглощением различных примесей. Эти процессы обычно заканчиваются на первой сотне часов. В течение остального срока службы электрические характеристики изменяются очень незначительно. Происходит постепенное уменьшение яркости свечения люминофора и светового потока лампы (рис.3: кривая 1 для ЛЛ 40 Вт, кривая 2 для ЛЛ 15 и 30 Вт). В некоторых лампах уже спустя несколько сотен часов горения начинают появляться темные налеты и пятна у концов трубки, связанные с распылением катодов. Они свидетельствуют о плохом качестве ламп.


Энергоэкономичные люминесцентные лампы (ЭЛЛ)

ЭЛЛ предназначены для общего освещения и полностью взаимозаменяемы со стандартными ЛЛ мощностью 20, 40 и 65 Вт в существующих осветительных установках без замены светильников и пускорегулирующей аппаратуры. Они имеют стандартную длину, стандартные значения рабочих токов и напряжений на лампах и те же или близкие значения световых потоков, что и у стандартных ламп соответствующей цветности при пониженной на 10% мощности (18, 36 и 58 Вт). Внешне ЭЛЛ отличаются от стандартных ламп только меньшим диаметром (26 мм вместо 38 мм). За счет уменьшения диаметра снижается расход основных материалов (стекло, люминофор, газы, ртуть и др.).

Для обеспечения того же падения напряжения на лампах при уменьшении их диаметра пришлось применить для наполнения смесь аргона с криптоном и снизить давление до 200-330 Па (вместо обычных 400 Па в стандартных лампах). В ЭЛЛ возрастает температура трубки до 50°С, но создавать специальные условия для охлаждения не требуется. Люмино-форный слой в ЭЛЛ находится в более тяжелых рабочих условиях, поэтому наиболее подходящими для этих ламп являются редкоземельные люминофоры. Однако такие люминофоры примерно в 40 раз дороже стандартного галофосфата кальция (ГФК), поэтому и лампы с такими люминофорами в несколько раз дороже обычных. Для снижения стоимости ламп применяют двухслойное покрытие. Сначала на стекло наносят ГФК, а поверх него редкоземельный люминофор небольшой толщины.

Промышленность выпускает ЭЛЛ мощностью 18, 36 и 58 Вт цветностей ЛБ, ЛДЦ и ЛЕЦ со световыми параметрами, совпадающими с параметрами обычных ЛЛ тех же цветностей мощностью 20, 40 и 65 Вт. Под маркой ЛБЦТ выпускаются ЭЛЛ с трехком-понентной смесью редкоземельных люминофоров со сроком службы 15000 ч.

Зарубежные ЭЛЛ

Зарубежные фирмы выпускают ЭЛЛ трех-четырех стандартизованных цветовых тонов и с двух-трехкомпо-нентной смесью редкоземельных люминофоров. В табл.2 приведены параметры некоторых типов ЭЛЛ в колбах диаметром 26 мм фирмы OSRAM (Германия).

Компактные люминесцентные лампы (КЛЛ)

В начале 80-х годов стали появляться многочисленные типы компактных ЛЛ мощностью от 5 до 25 Вт со световыми отдачами от 30 до 60 лм/Вт и сроками службы от 5 до 10000 ч. Часть типов КЛЛ предназначена для непосредственной замены ламп накаливания. Они имеют встроенную пускорегулирующую аппаратуру и снабжены стандартным резьбовым цоколем Е27.

Разработка КЛЛ стала возможной только в результате создания высокостабильных узкополосных люминофоров, активированных редкоземельными элементами, которые могут работать при более высоких поверхностных плотностях облучения, чем в стандартных ЛЛ. За счет этого удалось значительно уменьшить диаметр разрядной трубки. Что касается сокращения габаритов ламп в длину, то эта задача была решена путем разделения трубок на несколько более коротких участков, расположенных параллельно и соединенных между собой либо изогнутыми участками трубки, либо вваренными стеклянными патрубками.

Марка лампы

Тип лампы

Световой поток, лм,

лампы мощностью, Вт

Люмилюкс

Дневного цвета

Белого цвета

Тепло-белого цвета

"Интерна"

Люмилюкс делюкс

Белого цвета

Тепло-белого цвета

Стандартные

Универсально белый

Ярко-белого цвета

Тепло-белого цвета

Таблица 3

Тип лампы

Мощность,Вт

Напряжение, В

Световой поток, лм

Габариты.мм

Первая группа КЛ7/ТБЦ КЛ9/ТБЦ КЛ11/ТБЦ

27x13x135 27x13x167 27x13x235

Специальный G23

Вторая группа КЛС9/ТБЦ КЛС13/ТБЦ КЛС18/ТБЦ КЛС25/ТБЦ

0,093 0,125 0,18 0,27

425 600 900 1200

Ж85х150 Ж85х160 Ж85х170 Ж85х180

Резьбовой Е27

Третья группа CIRCOLUX CIRCOLUX CIRCOLUX

Ж165х100 Ж165хЮ0 Ж216хЮ0

Резьбовой Е27

Все многообразие выпускаемых в настоящее время КЛЛ можно разделить на четыре основные группы.

1. Без внешней оболочки, с разрядной трубкой Н- или П-образной формы, специальным цоколем, выносной пус-корегулирующей аппаратурой (ПРА) и встроенным стартером (рис.4,а) , где 1 -разрядная трубка; 2 - специальный цоколь G23 с вмонтированным внутри его стартером и конденсатором).

2. С призматической или опаловой внешней оболочкой, сложно изогнутой разрядной трубкой, стандартным резьбовым (или штифтовым) цоколем и встроенным стартером и ПРА (рис.4,б), где 1 - разрядная трубка; 3 -дроссель; 4 - внешняя колба; 5 - полая часть корпуса, внутри которой смонтированы дроссель, стартер, конденсатор, тепловой выключатель).

3. Кольцевые, без внешней оболочки, со стандартным резьбовым (или штифтовым) цоколем и встроенным стартером и ПРА (рис.4,в).

4. Со стеклянной внешней оболочкой, сложно изогнутой разрядной трубкой, специальным цоколем, выносным стартером и ПРА.

В первую группу входят КЛЛ, получившие наибольшее распространение. Лампы имеют разрядную трубку с диаметром 12,5 мм и снабжены специальным двухшты-ревым цоколем G23. Они выпускаются отечественной промышленностью (под маркой КЛ/ТБЦ) и рядом зарубежных фирм. Лампы наполнены аргоном при давлении 400 Па, что обеспечивает нормальную работу катодов и условия разряда. Лампы легко зажигаются даже при температурах до -20°С, время зажигания не превышает 10 с. Основные параметры таких ламп приведены в табл.3.

Серия КЛЛ повышенной мощности состоит из трех ламп мощностью 18, 24 и 35 Вт длиной 251, 362 и 443 мм, с номинальным световым потоком соответственно 1250, 2000 и 2500 лм и сроком службы 5000 ч. Лампы изготавливают в трубках увеличенного до 15 мм диаметра и монтируют на специальном 4-штыревом цоколе.

Во вторую группу входят довольно распространенные за рубежом КЛЛ со стеклянной или пластмассовой внешней оболочкой и стандартным резьбовым цоколем Е27 (см. рис.4,б). Внутри оболочки смонтированы ПРА, стартер и дважды U-образно изогнутая разрядная трубка. Основные параметры КЛЛ этого типа (отечественные КЛС.../ТБЦ и выпускаемые за рубежом (SL) приведены в табл.3 (РЭ2/2001) (вторая группа).

Ввиду того что разрядные трубки в этом виде ламп работают в закрытой внешней оболочке при температурах, заметно превышающих оптимальную, и нет возможности искусственно создать холодную зону, разрядные трубки наполняют амальгамой ртути.

Лампы предназначены для непосредственной замены ламп накаливания и дают большую экономию электроэнергии. К их недостаткам относят сравнительно большие

габариты и особенно массу по сравнению с лампами накаливания, неразборность конструкции, в силу чего после выхода из строя разрядной трубки приходится заменять целиком всю лампу, включая дроссель. В связи с этим некоторые зарубежные фирмы выпускают такие лампы в разборном исполнении.

В третью группу входит семейство кольцевых КЛЛ с резьбовым цоколем и встроенным ПРА, смонтированным в пластмассовом корпусе, расположенном по диаметру кольцеобразной разрядной трубки (см. РЭ2/2001, рис.4,в). Световая отдача кольцевых КЛЛ даже с полупроводниковыми ПРА уступает световой отдаче Н-образных КЛЛ соответствующих мощностей. Удобство кольцевых КЛЛ состоит в том, что ими можно непосредственно заменять лампы накаливания в осветительном приборе. В четвертую группу входят

лампы, имеющие цилиндрическую или грушевидную внешнюю оболочку, специальный 4-штыревой цоколь, выносные ПРА и стартер. Эти лампы имеют более низкие световые отдачи по сравнению с Н- и П-образными КЛЛ. Поэтому данные об этих лампах не приводятся.

Основные экономические преимущества КЛЛ - значительная экономия электроэнергии и уменьшение необходимого количества ламп для выработки одинакового количества люмен-часов по сравнению с лампами накаливания.

Современные КЛЛ сложны в производстве. Поэтому ведутся теоретические и экспериментальные исследования, направленные на усовершенствование таких ламп.

Безэлектродные КЛЛ.

В этих лампах для возбуждения свечения люминофоров используется разряд в парах ртути низкого давления в смеси с

инертными газами (аргоном, криптоном). Поддержание заряда осуществляется за счет энергии электромагнитного поля, которое создается в непосредственной близости от разрядного объема. Создание безэлектродных КЛЛ стало возможным благодаря современной микроэлектронике, которая позволила создать малогабаритные и сравнительно дешевые источники высокочастотной энергии с высоким КПД.

Все возможные типы безэлектродных ламп состоят из трех основных узлов: малогабаритного источника ВЧ энергии, устройства для эффективной передачи ВЧ энергии в разряд, называемого индуктором, и разрядного объема. Различия в устройстве и конструкции узлов определяются выбранной для возбуждения разряда высокой частотой. В настоящее время известны три основных типа безэлектродных КЛЛ с примерно одинаковыми энергетическими параметрами: с тороидальным индуктором на ферромагнитном сердечнике (частоты от 25 до 1000 кГц), с соленоидальным индуктором (частоты от 3 до 300 МГц) и сверхвысокочастотные (с частотой свыше 100 МГц).

Анализ показал, что в настоящее время наиболее целесообразно использовать конструкцию с соленоидальным индуктором и внешним по отношению к нему расположением разрядного объема. Конструкция подобной лампы показана на рис.5, где 1 - цоколь Е-27; 2 - блок автогенератора; 3 -наполнение, ртуть и инертный газ, 4 - соленоидальный индуктор; 5 - люминофорный слой; 6 - цилиндрическая полость в колбе; 7 - стеклянная колба. Экспериментальные образцы безэлектродных КЛЛ с соленоидальным индуктором (на частоте 18 МГц) мощностью 30 Вт на сетевое напряжение 220 В 50 Гц с диаметром внешней колбы 75-85 мм имеют световую отдачу 30-40 лм/Вт. При этом ферритовый сердечник разогревается до 300°С.

В настоящее время ни в одной стране нет промышленного выпуска безэлектродных КЛЛ и выпускают только экспериментальные образцы.

Люминесцентная лампа - газоразрядный источник света, в котором видимый свет излучается в основном люминофором, который в свою очередь светится под воздействием ультрафиолетового излучения разряда; сам разряд тоже излучает видимый свет, но в значительно меньшей степени. Световая отдача люминесцентной лампы в несколько раз больше, чем у ламп накаливания аналогичной мощности. Срок службы люминесцентных ламп может в 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу включений и выключений. Наиболее распространена ртутная люминесцентная лампа. Она представляет собой стеклянную трубку с нанесённым на внутреннюю поверхность слоем люминофора, заполненную парами ртути.

Различные виды люминесцентных ламп

Область применения

Люминесцентные лампы нашли широкое применение в освещении общественных зданий: школ, больниц, офисов и т.д. С появлением компактных люминесцентных ламп с электронными балластами, которые можно включать в патроны E27 и E14 вместо ламп накаливания, люминесцентные лампы завоёвывают популярность и в быту.

Популярность люминесцентных ламп обусловлена их преимуществами: значительно большей светоотдачей (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания), длительным сроком службы (2000-20000 часов в отличие от 1000 у ламп накаливания), рассеянным светом, разнообразием оттенков света.

Люминесцентные лампы наиболее целесообразно применять для общего освещения, прежде всего помещений большой площади, в особенности совместно с системами DALI, позволяющими улучшить условия освещения и при этом снизить потребление энергии на 50-83% и увеличить срок службы ламп. Люминесцентные лампы широко применяются также и в местном освещении рабочих мест, в световой рекламе, подсветке фасадов. Они нашли применение в подсветке жидкокристаллических экранов. Плазменные дисплеи также являются разновидностью люминесцентной лампы.

Коридор, освещённый люминесцентными лампами

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Однако, ее конструкция была очень близка к современной, и имела намного более высокую эффективность, чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой в более однородно бело-цветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип запуска ЛДС с электромагнитным балластом

При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает низкотемпературный дуговой электрический разряд. Лампа заполнена инертным газом и парами ртути, проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом - люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

Маркировка

Трёхциферный код на упаковке лампы содержит как правило информацию относительно качества света (индекс цветопередачи и цветовой температуры).

Первая цифра-индекс цветопередачи в 1х10 Ra (компактные люминесцентные лампы имеют 60-98 Ra, таким образом чем выше индекс, тем достоверней цветопередача)

Вторая и третья цифры-указывают на цветовую температуру лампы.

Таким образом маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 К (что соответствует цветовой температуре лампы накаливания)

Кроме того, индекс цветопередачи может обозначаться в соответствии с DIN 5035, где диапазон цветопередачи 20-100 Ra поделён на 6 частей- от 4 до 1А. (нем.)

Международная маркировка


Устаревшая маркировка

Люминесцентная лампа производства СССР мощностью 20 Вт(«ЛД-20»). Зарубежный аналог этой лампы - TLD 20W

В соответствии с ГОСТ 6825-91 лампы общего назначения маркировались, как:

  • ЛБ (белый свет)
  • ЛД (дневной свет)
  • ЛЕ (естественный свет)
  • ЛХБ (холодный свет)
  • ЛТБ (тёплый свет)

    Добавление буквы Ц в конце означало применение люминофора «де-люкс» с улучшенной цветопередачей, а ЦЦ - люминофора «супер де-люкс» с высококачественной цветопередачей.

    Лампы специального назначения маркировались, как:

  • ЛГ, ЛК, ЛЗ, ЛЖ, ЛР, ЛГР (лампы цветного свечения)
  • ЛУФ (лампы ультрафиолетового света)
  • ЛСР (синего света рефлекторные)

    Параметры выпускавшихся в СССР ламп приведены в таблице:

    Особенности подключения

    Люминесцентная лампа, в отличие от лампы накаливания, не может быть включена напрямую в электрическую сеть. Причин для этого две:

  • Для зажигания дуги в люминесцентной лампе требуется предварительный прогрев электродов и импульс высокого напряжения.
  • Люминесцентная лампа имеет отрицательное дифференциальное сопротивление, после зажигания лампы ток в ней многократно возрастает. Если его не ограничить, лампа выйдет из строя.

    Для решения этих проблем применяют специальные устройства - балласты. Наиболее распространённые на сегодняшний день схемы: электромагнитный балласт с неоновым стартёром и различные разновидности электронных балластов.

    Дешёвый вариант электронного подключения

    Электромагнитный балласт

    Электромагнитный балласт «1УБИ20» серии 110 завода ВАТРА, СССР.

    Электромагнитный балласт представляет собой электромагнитный дроссель, подключаемый последовательно с лампой. Параллельно лампе подключается стартёр, представляющий собой неоновую лампу с биметаллическими электродами и конденсатор. Дроссель формирует за счёт самоиндукции запускающий импульс, а также ограничивает ток через лампу. Преимуществом электромагнитного балласта является простота конструкции. Недостатков же такой схемы достаточно много:

  • Долгий запуск (1-3 сек в зависимости от степени износа лампы);
  • Меньший срок службы ламп;
  • Большее потребление энергии, чем у электронной схемы;
  • Малый cos φ;
  • Низкочастотный гул (50 Гц), исходящий от дросселя;
  • Мерцание лампы с удвоенной частотой сети, которое может повредить зрению, а иногда бывает опасным (из-за стробоскопического эффекта вращающиеся синхронно с частотой сети предметы могут казаться неподвижными. Поэтому люминесцентные лампы с электромагнитным балластом не применяют для освещения подвижных частей станков и механизмов)
  • Большие габариты и масса

    Электронный балласт

    Электронный балласт

    Электронный балласт подаёт на электроды лампы не сетевое напряжение, а высокочастотные (20-60 кГц) колебания, в результате чего заметное для глаз мигание ламп исключено. Может использоваться один из двух вариантов запуска ламп:

  • Холодный запуск - при этом лампа зажигается сразу после включения. Такую схему лучше использовать в случае, если лампа включается и выключается редко, так как режим холодного пуска более вреден для электродов лампы.
  • Горячий запуск - с предварительным прогревом электродов. Лампа зажигается не сразу, а спустя 0,5-1 сек, зато срок службы увеличивается, особенно при частых включениях и выключениях.

    Потребление электроэнергии люминесцентными светильниками при использовании электронного балласта обычно на 20-25% ниже. Использование централизованных систем освещения с автоматической регулировкой позволяет сэкономить до 85% электроэнергии.

    Механизм запуска лампы с электромагнитным балластом

    В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампу, обычно неоновую. Один электрод стартера неподвижный жёсткий, другой - биметаллический, изгибающийся при нагреве. Есть также стартеры и с двумя гибкими электродами (симметричные). В исходном состоянии электроды стартера разомкнуты. Стартер подключен параллельно лампе так, чтобы при замыкании его электродов ток проходил через спирали лампы.

    В момент включения к электродам лампы и стартера прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в стартере от приложенного напряжения возникает тлеющий разряд, и ток проходит через электроды лампы и стартера. Ток разряда мал для разогрева электродов лампы, но достаточен для разогрева электродов стартера, отчего биметаллическая пластинка, изгибается и замыкается с жёстким электродом. Ток в цепи возрастает и разогревает электроды лампы. Когда электроды стартера остывают, цепь размыкается, и благодаря самоиндукции происходит бросок напряжения на дросселе, необходимый для зажигания дуги. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для подавления радиопомех и улучшения условий зажигания лампы. Конденсатор вместе с дросселем образует колебательный контур, который стабилизирует напряжение и увеличивает длительность импульса зажигания. При отсутствии конденсатора этот импульс будет слишком коротким, а амплитуда слишком большой и энергия, накопленная в дросселе израсходуется на разряд в стартере. К моменту размыкания стартера электроды лампы уже достаточно разогреты, но в лампе ещё не вся ртуть испарилась и разряд проходит в атмосфере аргона. Как только вся ртуть в колбе лампы испаряется, лампа выходит на рабочий режим.

    Рабочее напряжение лампы ниже сетевого, за счёт падения напряжения на дросселе, благодаря чему повторного срабатывания стартера не происходит. В процессе зажигания лампы стартер иногда срабатывает несколько раз подряд, если он размыкается в момент, когда мгновенное значение сетевого напряжение равно нулю, либо электроды лампы еще недостаточно разогреты. По мере износа рабочее напряжение растёт, количество циклов срабатывания стартера увеличивается, и в конце концов лампа уже не может выйти на рабочий режим. Это вызывает характерное мигание вышедшей из строя лампы. Когда лампа гаснет, можно видеть свечение катодов разогретых током, протекающим через стартер.

    стартер

    Механизм запуска лампы с электронным балластом

    В отличие от электромагнитного балласта для работы электронного балласта обычно не требуется отдельный специальный стартер так как такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют различные способы запуска люминесцентных ламп. Чаще всего электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, обычно - переменное и более высокой частоты, чем сетевое (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы. Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминесцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.


    Электронный балласт

    Причины выхода из строя

    Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный дуговой разряд и предохраняет вольфрамовые нити от перегрева. В процессе работы она постепенно осыпается с электродов, выгорает и испаряется. Особенно интенсивно она осыпается во время запуска, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к локальным перепадам температур. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать.

    Выход из строя ламп с электромагнитным балластом

    Повышение напряжения на лампе в процессе ее старения приводит к тому, что начинает постоянно срабатывать стартер - отсюда всем известное мигание вышедших из строя ламп. При этом электроды лампы постоянно разогреваются, и в конце концов (примерно через 2 - 3 дня мигания) одна из нитей перегорает. Затем минуту-две лампа горит без мерцания, разряд исходит от остатков перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после этого разряд переходит на траверсу (проволоку, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется и лампа вновь начинает мерцать. Если ее выключить, она больше не загорится.

    Выход из строя ламп с электронным балластом

    В процессе старения лампы постепенно выгорает активная масса электродов, после чего нити разогреваются и перегорают. В качественных балластах предусмотрена схема автоматического отключения перегоревшей лампы. В недорогих некачественных ЭПРА подобная защита отсутствует, и после повышения напряжения лампа погаснет, а в цепи наступит резонанс, приводящий к значительному возрастанию тока и перегоранию транзисторов балласта.

    Также нередко в балласты низкого качества (обычно на компактных люминесцентных лампах со встроенным балластом) на выходе устанавливается конденсатор, рассчитанный на напряжение, близкое к рабочему напряжению новой лампы. По мере старения лампы напряжение повышается и в конденсаторе возникает пробой, также выводящий из строя транзисторы балласта.


    Проверка электродов одной стороны на целостность. Сопротивление 9,9Ω говорит о том, что нить электрода на этой стороне цела.


    Проверка электродов одной стороны на целостность. Бесконечно большое сопротивление говорит о том, что нить электродов разорвана. Вторым признаком является потемнение вблизи электрода.


    Низкокачественный ЭПРА

    Люминофоры и спектр излучаемого света

    Многие люди считают свет, излучаемый люминесцентными лампами, грубым и неприятным. Цвет предметов, освещенных такими лампами, может быть несколько искажён. Отчасти это происходит из-за синих и зелёных линий в спектре излучения газового разряда в парах ртути, отчасти - из-за типа применяемого люминофора.

    Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, но при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы, как правило, имеют очень высокую световую отдачу.

    В более дорогих лампах используется «трёхполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы, как правило, имеют более низкую световую отдачу.

    Также существуют люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

    Производятся лампы, предназначенные для освещения мясных прилавков в супермаркетах. Свет этих ламп имеет розовый оттенок, в результате такого освещения мясо приобретает более аппетитный вид, что привлекает покупателей.

    В домашних условиях оценить спектр лампы можно с помощью компакт-диска. Для этого нужно посмотреть на отражение света лампы от рабочей поверхности диска - в дифракционной картине будут видны спектральные линии люминофора. Если лампа расположена близко, между лампой и диском лучше поместить экран с маленьким отверстием.



    Типичный спектр люминесцентной лампы.


    Спектр излучения: непрерывный 60-ватной лампы накаливания (вверху) и линейчатый 11-ватной компактной люминесцентной лампы (внизу), линейчатый спектр излучения может вызвать искажения в цветопередаче

    Варианты исполнения

    По стандартам лампы дневного света разделяются на колбные и компактные.

    Колбные лампы

    Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:

  • T4 (диаметр 4/8 дюйма=1.27 см),
  • T5 (диаметр 5/8 дюйма=1.59 см),
  • T8 (диаметр 8/8 дюйма=2.54 см),
  • T10 (диаметр 10/8 дюйма=3.17 см) и
  • T12 (диаметр 12/8 дюйма=3.80 см).

    Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.

    Компактные лампы

    Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:

    * 2D
    * G23
    * 2G7
    * G24
    o G24Q1
    o G24Q2
    o G24Q3
    * G53

    Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Преимуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп предназначены для монтажа в обычные светильники, срок службы таких ламп


    Компактные люминесцентные лампы

    2D
    Представляет собой изогнутую в одной плоскости люминесцентную лампу с очертаниями в форме квадрата. Цоколь представляет собой прямоугольник 36х60 мм, имеет встроеный электронный стартер, в центре 2 латунных контакта на расстоянии 8мм друг от друга, в качестве крепления на высоте 20мм от центра используется пластиковый затвор. Мощность ламп 2D составляет 16, 28 и 36 ватт. Основное применение: в качестве декоративного освещения, иногда встречаются в герметичных светильниках для душевых кабинок и в качестве интегрированого освещения современных душевых кабинок.


    2D

    У лампы G23 внутри цоколя расположен стартер и конденсатор, для запуска лампы дополнительно необходим только дроссель либо электронный ПРА (в таком случае стартер не задействуется, лампу запускает конденсатор). Их мощность обычно не превышает 14 Ватт. Основное применение - настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат, а также нередко в общих помещениях новых жилых домов (лестничные клетки, коридоры, тамбуры). Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.


    G23 с электромагнитным балластом

    Внешне лампа с цоколем 2G7 напоминает лампу с цоколем G23, однако у этого типа цоколя четыре штырька вместо двух, а встроенные стартер и конденсатор отсутствуют. Такая лампа предназначена только для работы с электронными ПРА. Применяются в настольных лампах.

    Лампы G24D1,G24D2 и G24D3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

    Лампы G53 представляют собой тонкий диск (16-20мм) большого диаметра (~73мм). Цоколь таких ламп имеет 2 латунных Т-образных контакта по бокам на расстоянии 53мм друг от друга. В качестве источника света используется согнутая в одной плоскости тонкая герметичная трубка люминесцентной лампы с торчащими из неё 4 контактами. Одним из особенностей исполнения являются интегрированые отражатель и линза (оболочка). Лампы G53 имеют встроеный электронный балласт, поэтому для их работы необходимо только питание от сети. Небольших размеров ламп G53 добиваются при помощи использования поверхностного монтажа компонентов на плату электронного балласта и использования обеих сторон платы электронного балласта для монтажа электронных компонентов (SMD). Мощность таких ламп составляет от 6 до 11 ватт, светильники для ламп этого типа выпускаются как для влажных помещений со степенью защиты IP44, так и без закрытого корпуса для монтажа в гипсокартонный потолок на замену более энергоёмким галогенным лапмам.

    Утилизация

    Все люминесцентные лампы содержат ртуть (в дозах от 1 до 70 мг), ядовитое вещество 1-го класса опасности ("чрезвычайно опасные"). Причем соединения ртути в люминесцентных лампах значительно опасней ртути металлической. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью. По истечении срока службы лампу, как правило, выбрасывают куда попало. На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся отстраниться от проблемы.

    Существует несколько фирм по утилизации ламп, и юридические лица, а также индивидуальные предприниматели обязаны сдавать лампы на переработку и разрабатывать паспорт опасного отхода. Кроме того в ряде городов существуют полигоны по утилизации токсичных отходов, принимающие отходы от частных лиц бесплатно. В Москве перегоревшие люминесцентные лампы бесплатно принимаются для дальнейшей переработки в районных ДЕЗ или РЭУ, где установлены специальные контейнеры. Если лампы не принмают в ДЕЗ и РЭУ, необходимо жаловаться в управу или префектуру. В магазинах IKEA в отделе «Обмен или возврат покупок» принимают на переработку любые энергосберегающие лампы любого производителя.

    Если вам не безразлично здоровье будущих поколений, не выкидывайте люминесцентные лампы просто в мусорные баки, и тем более не разбивайте их на улице. Предельно допустимые концентрации ртути в жилых районах очень и очень малы, превысить их - запросто, а это медленно, но обязательно отразится на здоровье, ибо ртуть будет попадать в воду, в воздух, в почвы.

    Бренды (производители)

    Производятся главным образом в Китае под известными брендами осветительной техники: ВОСХОД, Аладдин, BLV, Camelion, Comtech, Старт, Duralamp, Ecola, EMS, ERA, Favor, Feron, General Electric, Iskra, Kanlux, Калашниково(Калашниковский электроламповый завод), Космос, Legrand, Lezard, Megaman, Muller-Licht, Nakai, Narva, Navigator, Osram, Paulmann, Рефлакс, Philips Lighting, Phoenix Light, Pila, Polux, SunErgy ESL, Sylvania, Tungsram, Wolta, Ультралайт, Лайнер, Лисма, Полтава(Полтавский завод газоразрядных ламп)…

  • Со дня начала массового производства люминесцентных ламп и по сей день они остаются в лидерах по распространенности среди осветительных приборов. Возможно, когда-нибудь по этому параметру их обгонят светодиодные, но пока факт остается фактом. И дело не только в их экономичности по сравнению с галогенными или лампами накаливания. На сегодняшний день это самый доступный вариант освещения для школ, детских садов, офисов, производственных и складских помещений.

    Люминесцентные, газоразрядные, лампы дневного света – как только не называют подобные осветительные приборы, порой даже не задумываясь, откуда взялось название. Все просто. Светильники с ЛДС работают с помощью дросселя и стартера. Стартер, создавая кратковременное короткое замыкание, способствует появлению искры, а дроссель посредством выработки высоковольтного разряда пробивает содержащиеся в колбе пары ртути, в результате чего возникает ультрафиолетовое свечение.

    Классификация люминесцентных ламп

    Для классификации и выделения технических характеристик ЛЛ необходимо определить их работоспособность, а так же понять, какова их конструкция. Для этого целесообразно:

    • Определить свет, который излучается лампой. Он может быть обычным белым или дневным. Усовершенствованные модели возможны в универсальном исполнении.
    • Узнать поперечную ширину трубки. Чем больше этот показатель, тем мощнее будет ЛДС, а также будут выше данные по температуре цвета, спектру и сроку службы. Наиболее распространены и эффективны колбы на 18, 26 и 38 мм. Данные диаметра и длины трубки обычно маркируют рядом, к примеру, 26/406.
    • Посмотреть на такие показатели, как мощность ламп. На основе этих показателей возможно определение площади, освещаемой прибором. Также от этого параметра зависит и КПД.
    • Узнать, сколько контактов имеет ЛЛ. Их может быть четыре, может два при скрученной в кольцо лампе.
    • Определить, требуется ли для розжига люминесцентной лампы стартер и дроссель, или ЛЛ является бесстартерной. Некоторые думают, что если стартер не требуется, прибор будет более экономичным. Но это заблуждение, никакой связи между наличием либо отсутствием прерывателя и энергосберегаемостью нет.
    • Учесть номинал необходимого питания. Есть лампы, работающие не от 220 В, а от 127 В.
    • Посмотреть на форму лампы. Она может быть в форме кольца, U-образной, прямой, спиралевидной, шарообразной или дуговой.
    • Обратить внимание на долговечность работы. Она зависит от того, где должна быть применена данная лампа. Наиболее долговечны ЛЛ, предназначенные для дома.
    • Визуально понять цвет лампы. Является она ЛДЦ или ЛБ.


    Маркировка

    Лампы дневного света можно разделить на две группы – имеющие общее и специальное назначение. Общее назначение – приборы 15–80 ватт. Они могут быть как белыми, так и цветными (красный, желтый, зеленый, голубой и синий).

    По параметру мощности бывают маломощными (менее 15 ватт) и мощными (более 80 ватт).

    Имеет значение и тип разряда, они тоже бывают разными – дуговой, тлеющий и тлеющего сечения.

    Излучение – естественный свет, цветная лампа, со специализированным спектром и ультрафиолетовая.

    Форма трубки – трубчатая или фигурная. Светораспределение – направленное излучение (рефлекторная, щелевая, панельная и пр.) и ненаправленное.

    Указание особенностей обязательно в названии, поэтому, посмотрев на обозначение люминесцентных ламп, можно определить все показатели этих осветительных приборов. У ЛЛ, имеющих улучшенное качество по цветопередаче, в маркировке за литерой цвета будет проставлена буква Ц, а при условии особого качества – ЦЦ.

    К примеру, маркировка лампы выглядит следующим образом – ЛКЦУ-80. Значит, это люминесцентная красная U-образная лампа мощностью 80 ватт. Маркировка люминесцентных ламп OSRAM немного отличается, но все же основные данные в ней те же.


    Преимущества и недостатки

    При уменьшении размеров (длины) лампы увеличивается световая отдача. Получается, что уменьшаются потери, что способствует улучшению качества светового потока. Тогда напрашивается логичный вывод – лучшее освещение даст одна лампа мощностью 30 ватт, чем две по 15 ватт.

    Какие же преимущества у подобных световых приборов? Конечно, первое, что следует назвать – это приличный уровень КПД, он составляет приблизительно 25%. Что касается светоотдачи, то она почти в десять раз выше, чем у обычной лампы с нитью накаливания.

    Следующий плюс — это большая долговечность. Она составляет 20 000 ч. К тому же такие лампы обладают огромным цветовым спектром. Конечно, с многоцветной светодиодной лентой его не сравнить, но все же возможно подобрать осветительный прибор со световым потоком такого цвета, который нужен.

    Распределение свечения по всей люминесцентной лампе. Хотя, конечно, это преимущество сомнительно, скорее его можно отнести к недостаткам. А их и без того хватает.


    К примеру, такие лампы дневного света требуют установки пускорегулирующего аппарата, т. к. необходима стабилизация и поддержка нормального функционирования прибора освещения. Также эти лампы находятся в зависимости от погодных условий (при установке на улице).

    Оптимальный температурный режим подобных люминесцентных трубок – это 20 градусов по Цельсию.

    Еще одна очень важная проблема – возможность отравиться при дефекте колбы и выделении паров ртути. По той же причине (испарения тяжелых металлов) возникают и проблемы с утилизацией. Производят ее только специализированные центры, и стоит это немалых средств.

    Также при нестабильном напряжении возможно возникновение ощутимого мерцания, что, естественно, не добавит здоровья зрению и может вызвать головные боли и раздражительность. О последнем недостатке уже упоминалось – диммировать устройство очень сложно и трудоемко.

    Как выбрать люминесцентную лампу?

    При выборе нужно следовать некоторым правилам, которые могут повлиять в будущем на качество люминесцентной лампы, а также на продолжительность ее срока службы. Обращать внимание следует на следующие показатели технических характеристик:

    1. погодные условия (если светильник на улице) и внутренняя среда в помещении, где предполагается использование;
    2. температурный режим, при котором будет происходить функционирование осветительного прибора;
    3. напряжение в сети, что важно для предотвращения мерцания;
    4. размеры прибора. Необходимо предусмотреть, вместится ли люминесцентная лампа в светильник;
    5. приемлемая и необходимая мощность прибора, его цвет и сила светопотока.

    Выбрав люминесцентную лампу с подходящими характеристиками, возможно надолго получить качественное изделие. Его не придется менять каждый месяц.


    Определить качество подобных приборов, опираясь на марку фирмы-изготовителя, не получится, т. к. определенная часть люминесцентных ламп у любого поставщика будет браком. И размер такого неликвида не зависит от цены изделия или раскрученности бренда.

    При приобретении цветной люминесцентной лампы (ЛДЦ) или же специализированной придется переплатить около 10–15% от стоимости обычной ЛЛ. Это может быть бактерицидная лампа, какие устанавливаются в больницах для кварцевания, т. е. обеззараживания, либо лампы для растениеводства.

    Некоторые данные для облегчения выбора

    Естественно, что от мощности лампы зависит ее долговечность, а также сила светового потока, в том числе и через некоторое время работы. Зная подобные параметры люминесцентных ламп, можно подобрать оптимальный световой прибор, который не испортит настроения при установке.

    К примеру, при потребляемой мощности подобного светового прибора в 30 ватт средний срок службы составит 15 000 часов. Средняя сила светового потока после 100 часов горения у белой (ЛБ) будет равна 140 лм, теплой и холодной белой – 100 лм. У дневной – 180 лм, а у дневной цветной этот показатель будет равен 80 лм. А вот у ЛДЦ параметры уже будут другими.


    Не стоит забывать о том, что бесстартерные лампы хотя и расходуют не меньше электроэнергии, чем светильники со стартером, но все же долговечность их работы немного больше. А потому наилучшим вариантом будет приобретение именно таких люминесцентных ламп с последующим исключением из схемы их включения стартеров. Сделать это нетрудно, и времени много такая работа не займет.

    Экзотика

    Вообще нестандартная форма люминесцентных ламп берет свое начало со времен неоновых реклам. Сейчас, когда у производителя появилась масса возможностей изготовить трубку любой конфигурации, фигурные лампы в основном стали использоваться для смелых дизайнерских решений. Такие изделия не маркируются привычными символами. Для того чтобы узнать их технические характеристики, необходимо посмотреть в паспорт изделия.

    Такие люминесцентные лампы очень неплохо вписываются в футуристические интерьеры. Интересно, что подобного вида светильника и распространяемого им света невозможно добиться при помощи любого другого вида источника освещения.

    Что такое люминесцентная лампочка, какой у нее принцип работы и преимущества по сравнению с альтернативными вариантами. Забегая наперед, хотелось бы сразу отметить, что такой вариант источника освещения несет некую опасность, если вдруг . Именно поэтому сначала рекомендуем Вам внимательно изучить технические характеристики люминесцентных ламп, на основании чего взвесить все за и против по поводу выбора данного варианта.

    Устройство

    Устройство люминесцентной лампы имеет некоторые сходства с конструкцией и галогенных изделий. Состоит она из герметичной колбы и электродов.

    Колба заполнена инертным газом и небольшим количеством ртути (до 30 мг). Внутренние стенки колбы покрыты люминофором, который преобразует ультрафиолетовое излучение в свет, видимый человеку. Электроды установлены с обеих сторон колбы (на торцах). Конструкция электрода представляет собой все ту же вольфрамовую нить, к которой припаяны контактные ножки, пропускающие электрический ток. Принцип действия следующий — при прохождении электроэнергии электрод нагревается и возникает ультрафиолетовое излучение, которое проходя через стенки колбы, преобразуется в видимый световой поток.

    Характеристика

    Технические характеристики люминесцентных ламп освещения:

    • диапазон мощностей изделий – от 15 до 80 Вт (для общего назначения);
    • номинальное напряжение — 220 и 127 В;
    • температура накала вольфрамовой нити – от 2700 до 6500 градусов (по Кельвину);
    • световая отдача – может достигать рекордных 104 Лм/1 Вт (в среднем от 40 до 80 Лм/1 Вт);
    • размер цоколя – 14 мм (миньон E14) и 27 мм (стандарт E27);
    • диаметр колбы – 12,16,26,38 мм;
    • срок службы – от 10000 до 40000 часов;
    • коэффициент полезного действия превышает 20%.

    Характеристика энергосберегающих лампочек

    Типы

    Предоставляем к Вашему вниманию основные типы люминесцентных ламп:

    • линейные;
    • компактные.

    Линейные люминесцентные источники света применяются для освещения производственных и офисных зданий, а также спортивных площадок. Их особенность в высокой мощности и повышенной светоотдаче. К тому же данные изделия способны экономить до 30% потребляемой электроэнергии, что является их главным достоинством.


    Компактные либо другими словами энергосберегающие лампы (КЛЛ) применяются для общего назначения. Они имеют специфическую конструкцию, представленную изогнутой колбой. Изделия применяются не только во время , но и для декоративной подсветки витрин, а также дезинфекции больничных помещений. Основное преимущество заключается в высокой светоотдаче и продолжительном сроке службы.


    Маркировка

    На сегодняшний день существует несколько маркировок люминесцентных ламп, сейчас рассмотрим каждую из них.

    Отечественная

    Отечественная маркировка представлена цифро-буквенной аббревиатурой, которая расшифрована на картинке.


    Первая буква «Л» — лампа.

    Вторая буква – характеристика светового потока (Д — дневной, ХБ — холодный белый, ТБ — белый, ЕБ — естественно белый, Б — белый, УФ – ультрафиолетовый, Г – голубой, С – синий, К – красный, Ж – желтый, З – зеленый).

    Третья буква – качество цветопередачи (Ц – улучшенное качество, ЦЦ – особо высокое качество).

    Четвертая буква – конструктивная особенность (А –амальгамная, Б – быстрого пуска, К – кольцевая, Р – рефлекторная, У – у образная).

    Цифра после букв – мощность в Вт.

    Обращаем Ваше внимание на то, что в маркировке люминесцентной лампы могут присутствовать такие аббревиатуры, как ЛХЕ и ЛЕ, что означает естественного свет и холодный естественный свет.


    Зарубежная


    Зарубежная маркировка представлена в данной таблице:


    Как вы видите, вместо цифро-буквенного шифра используется трехзначное число, а также определение в виде простой подписи на английском языке (к примеру, марка cool white так и переводиться «холодный свет»).

    Преимущества

    Энергосберегающие люминесцентные лампочки имеют массу преимуществ, поэтому на мировом рынке источников света занимают второе место после лидеров — светодиодных изделий.

    Основными преимуществами являются:

    1. Высокие энергосберегающие показатели, в чем они и превосходят лампы накаливания;
    2. Хорошее качество света и светоотдача;
    3. Широкая разновидность изделий для специального и общего назначения;
    4. Длительный срок службы (на порядок продолжительнее, чем у ).

    Недостатки

    Среди недостатков люминесцентных ламп выделяют:

    1. Повышенная стоимость изделий;
    2. Вредное влияние на самочувствие человека при длительной работе искусственного освещения. К тому же такие экономки вредны для глаз;
    3. Срок службы заметно сокращается при частом включении/отключении света;
    4. Выходят из строя при перепадах напряжения (необходимо дополнительно устанавливать );
    5. Интенсивность освещения невозможно регулировать с помощью диммера;
    6. Запрещается использовать в запыленных и влажных помещениях (к примеру, при );
    7. Плохо работают при низких температурах;
    8. Если колбу разбить, ртуть может негативно повлиять на организм человека;
    9. Требуют специализированную утилизацию, которая может присутствовать далеко не в каждом городе.

    Как Вы видите, недостатков у данных изделий больше, чем преимуществ. Все же при правильном использовании все недостатки сразу же «отлетают», оставляя только главное достоинство — высокие энергосберегающие свойства.