Все прямоугольники являются многоугольниками. Урок "Многоугольники

В курсе гео-мет-рии мы изу-ча-ем свой-ства гео-мет-ри-че-ских фигур и уже рас-смот-ре-ли про-стей-шие из них: тре-уголь-ни-ки и окруж-но-сти. При этом мы об-суж-да-ли и кон-крет-ные част-ные слу-чаи этих фигур, такие как пря-мо-уголь-ные, рав-но-бед-рен-ные и пра-виль-ные тре-уголь-ни-ки. Те-перь при-шло время по-го-во-рить о более общих и слож-ных фи-гу-рах - мно-го-уголь-ни-ках .

С част-ным слу-ча-ем мно-го-уголь-ни-ков мы уже зна-ко-мы - это тре-уголь-ник (см. Рис. 1).

Рис. 1. Тре-уголь-ник

В самом на-зва-нии уже под-чер-ки-ва-ет-ся, что это фи-гу-ра, у ко-то-рой три угла. Сле-до-ва-тель-но, в мно-го-уголь-ни-ке их может быть много, т.е. боль-ше, чем три. На-при-мер, изоб-ра-зим пя-ти-уголь-ник (см. Рис. 2), т.е. фи-гу-ру с пятью уг-ла-ми.

Рис. 2. Пя-ти-уголь-ник. Вы-пук-лый мно-го-уголь-ник

Опре-де-ле-ние. Мно-го-уголь-ник - фи-гу-ра, со-сто-я-щая из несколь-ких точек (боль-ше двух) и со-от-вет-ству-ю-ще-го ко-ли-че-ства от-рез-ков, ко-то-рые их по-сле-до-ва-тель-но со-еди-ня-ют. Эти точки на-зы-ва-ют-ся вер-ши-на-ми мно-го-уголь-ни-ка, а от-рез-ки - сто-ро-на-ми . При этом ни-ка-кие две смеж-ные сто-ро-ны не лежат на одной пря-мой и ни-ка-кие две несмеж-ные сто-ро-ны не пе-ре-се-ка-ют-ся.

Опре-де-ле-ние. Пра-виль-ный мно-го-уголь-ник - это вы-пук-лый мно-го-уголь-ник, у ко-то-ро-го все сто-ро-ны и углы равны.

Любой мно-го-уголь-ник раз-де-ля-ет плос-кость на две об-ла-сти: внут-рен-нюю и внеш-нюю. Внут-рен-нюю об-ласть также от-но-сят кмно-го-уголь-ни-ку .

Иными сло-ва-ми, на-при-мер, когда го-во-рят о пя-ти-уголь-ни-ке , имеют в виду и всю его внут-рен-нюю об-ласть, и гра-ни-цу. А ко внут-рен-ней об-ла-сти от-но-сят-ся и все точки, ко-то-рые лежат внут-ри мно-го-уголь-ни-ка, т.е. точка тоже от-но-сит-ся к пя-ти-уголь-ни-ку (см. Рис. 2).

Мно-го-уголь-ни-ки еще ино-гда на-зы-ва-ют n-уголь-ни-ка-ми, чтобы под-черк-нуть, что рас-смат-ри-ва-ет-ся общий слу-чай на-ли-чия ка-ко-го-то неиз-вест-но-го ко-ли-че-ства углов (n штук).

Опре-де-ле-ние. Пе-ри-метр мно-го-уголь-ни-ка - сумма длин сто-рон мно-го-уголь-ни-ка.

Те-перь надо по-зна-ко-мить-ся с ви-да-ми мно-го-уголь-ни-ков. Они де-лят-ся на вы-пук-лые и невы-пук-лые . На-при-мер, мно-го-уголь-ник, изоб-ра-жен-ный на Рис. 2, яв-ля-ет-ся вы-пук-лым, а на Рис. 3 невы-пук-лым.

Рис. 3. Невы-пук-лый мно-го-уголь-ник

2. Выпуклые и невыпуклые многоугольники

Опре-де-ле-ние 1. Мно-го-уголь-ник на-зы-ва-ет-ся вы-пук-лым , если при про-ве-де-нии пря-мой через любую из его сто-рон весь мно-го-уголь-ник лежит толь-ко по одну сто-ро-ну от этой пря-мой. Невы-пук-лы-ми яв-ля-ют-ся все осталь-ные мно-го-уголь-ни-ки .

Легко пред-ста-вить, что при про-дле-нии любой сто-ро-ны пя-ти-уголь-ни-ка на Рис. 2 он весь ока-жет-ся по одну сто-ро-ну от этой пря-мой, т.е. он вы-пук-лый. А вот при про-ве-де-нии пря-мой через в че-ты-рех-уголь-ни-ке на Рис. 3 мы уже видим, что она раз-де-ля-ет его на две части, т.е. он невы-пук-лый.

Но су-ще-ству-ет и дру-гое опре-де-ле-ние вы-пук-ло-сти мно-го-уголь-ни-ка.

Опре-де-ле-ние 2. Мно-го-уголь-ник на-зы-ва-ет-ся вы-пук-лым , если при вы-бо-ре любых двух его внут-рен-них точек и при со-еди-не-нии их от-рез-ком все точки от-рез-ка яв-ля-ют-ся также внут-рен-ни-ми точ-ка-ми мно-го-уголь-ни-ка.

Де-мон-стра-цию ис-поль-зо-ва-ния этого опре-де-ле-ния можно уви-деть на при-ме-ре по-стро-е-ния от-рез-ков на Рис. 2 и 3.

Опре-де-ле-ние. Диа-го-на-лью мно-го-уголь-ни-ка на-зы-ва-ет-ся любой от-ре-зок, со-еди-ня-ю-щий две не со-сед-ние его вер-ши-ны.

3. Теорема о сумме внутренних углов выпуклого n-угольника

Для опи-са-ния свойств мно-го-уголь-ни-ков су-ще-ству-ют две важ-ней-шие тео-ре-мы об их углах: тео-ре-ма о сумме внут-рен-них углов вы-пук-ло-го мно-го-уголь-ни-ка и тео-ре-ма о сумме внеш-них углов вы-пук-ло-го мно-го-уголь-ни-ка . Рас-смот-рим их.

Тео-ре-ма. О сумме внут-рен-них углов вы-пук-ло-го мно-го-уголь-ни-ка (n -уголь-ни-ка).

Где - ко-ли-че-ство его углов (сто-рон).

До-ка-за-тель-ство 1. Изоб-ра-зим на Рис. 4 вы-пук-лый n-уголь-ник.

Рис. 4. Вы-пук-лый n-уголь-ник

Из вер-ши-ны про-ве-дем все воз-мож-ные диа-го-на-ли. Они делят n-уголь-ник на тре-уголь-ни-ка, т.к. каж-дая из сто-рон мно-го-уголь-ни-ка об-ра-зу-ет тре-уголь-ник, кроме сто-рон, при-ле-жа-щих к вер-шине . Легко ви-деть по ри-сун-ку, что сумма углов всех этих тре-уголь-ни-ков как раз будет равна сумме внут-рен-них углов n-уголь-ни-ка. По-сколь-ку сумма углов лю-бо-го тре-уголь-ни-ка - , то сумма внут-рен-них углов n-уголь-ни-ка:

До-ка-за-тель-ство 2. Воз-мож-но и дру-гое до-ка-за-тель-ство этой тео-ре-мы. Изоб-ра-зим ана-ло-гич-ный n-уголь-ник на Рис. 5 и со-еди-ним любую его внут-рен-нюю точку со всеми вер-ши-на-ми.

Мы по-лу-чи-ли раз-би-е-ние n-уголь-ни-ка на n тре-уголь-ни-ков (сколь-ко сто-рон, столь-ко и тре-уголь-ни-ков). Сумма всех их углов равна сумме внут-рен-них углов мно-го-уголь-ни-ка и сумме углов при внут-рен-ней точке, а это угол . Имеем:

Что и тре-бо-ва-лось до-ка-зать.

До-ка-за-но.

По до-ка-зан-ной тео-ре-ме видно, что сумма углов n-уголь-ни-ка за-ви-сит от ко-ли-че-ства его сто-рон (от n). На-при-мер, в тре-уголь-ни-ке , а сумма углов . В че-ты-рех-уголь-ни-ке , а сумма углов - и т.д.

4. Теорема о сумме внешних углов выпуклого n-угольника

Тео-ре-ма. О сумме внеш-них углов вы-пук-ло-го мно-го-уголь-ни-ка (n -уголь-ни-ка).

Где - ко-ли-че-ство его углов (сто-рон), а , …, - внеш-ние углы.

До-ка-за-тель-ство. Изоб-ра-зим вы-пук-лый n-уголь-ник на Рис. 6 и обо-зна-чим его внут-рен-ние и внеш-ние углы.

Рис. 6. Вы-пук-лый n-уголь-ник с обо-зна-чен-ны-ми внеш-ни-ми уг-ла-ми

Т.к. внеш-ний угол свя-зан со внут-рен-ним как смеж-ные, то и ана-ло-гич-но для осталь-ных внеш-них углов. Тогда:

В ходе пре-об-ра-зо-ва-ний мы вос-поль-зо-ва-лись уже до-ка-зан-ной тео-ре-мой о сумме внут-рен-них углов n-уголь-ни-ка .

До-ка-за-но.

Из до-ка-зан-ной тео-ре-мы сле-ду-ет ин-те-рес-ный факт, что сумма внеш-них углов вы-пук-ло-го n-уголь-ни-ка равна от ко-ли-че-ства его углов (сто-рон). Кста-ти, в от-ли-чие от суммы внут-рен-них углов.

Далее мы более по-дроб-но будем ра-бо-тать с част-ным слу-ча-ем мно-го-уголь-ни-ков - че-ты-рех-уголь-ни-ка-ми. На сле-ду-ю-щем уроке мы по-зна-ко-мим-ся с такой фи-гу-рой, как па-рал-ле-ло-грамм, и об-су-дим его свой-ства.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/mnogougolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/pryamougolnye-treugolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/treugolniki-2

http://nsportal.ru/shkola/geometriya/library/2013/10/10/mnogougolniki-urok-v-8-klasse

https://im0-tub-ru.yandex.net/i?id=daa2ea7bbc3c92be3a29b22d8106e486&n=33&h=190&w=144

Тема: «Многоугольники.Виды многоугольников»

9 класс

ШЛ №20

Учитель: Харитонович Т.И. Цель урока: исследование видов многоугольников.

Обучающая задача: актуализировать, расширить и обобщить знания учащихся о многоугольниках; сформировать представление о “составных частях” многоугольника; провести исследование количества составных элементов правильных многоугольников (от треугольника до n – угольника);

Развивающая задача: развивать умения анализировать, сравнивать, делать выводы, развивать вычислительные навыки, устную и письменную математическую речь, память, а также самостоятельность в мышлении и учебной деятельности, умение работать в парах и группах; развивать исследовательскую и познавательную деятельность;

Воспитательная задача: воспитывать самостоятельность, активность, ответственность за порученное дело, упорство в достижении поставленной цели.

Оборудование: интерактивная доска (презентация)

Ход урока

Показ презентации: «Многоугольники»

“Природа говорит языком математики, буквы этого языка … математические фигуры”. Г.Галлилей

В начале урока класс делится на рабочие группы (в нашем случае деление на3 группы)

1.Стадия вызова-

а) актуализация знаний учащихся по теме;

б) пробуждение интереса к изучаемой теме, мотивация каждого ученика к учебной деятельности.

Прием: Игра “Верите ли вы в то, что…”, организация работы с текстом.

Формы работы: фронтальная, групповая.

“Верите ли вы в то, что ….”

1. … слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”?

2. … треугольник относится к большому семейству многоугольников, выделяемых среди ножества различных геометрических фигур на плоскости?

3. … квадрат – это правильный восьмиугольник (четыре стороны + четыре угла)?

Сегодня на уроке речь пойдет о многоугольниках. Мы узнаем, что эта фигура ограничена замкнутой ломаной, которая в свою очередь бывает простой, замкнутой. Поговорим о том, что многоугольники бывают плоскими, правильными, выпуклыми. Один из плоских многоугольников – треугольник, с которым вы давно и хорошо знакомы (можно продемонстрировать учащимся плакаты с изображением многоугольников, ломаной, показать их различные виды, также можно воспользоваться и ТСО).

2. Стадия осмысления

Цель: получение новой информации, ее осмысление, отбор.

Прием: зигзаг.

Формы работы: индивидуальная->парная->групповая.

Каждому из группы выдается текст по теме урока, причем текст составлен таким образом, что он включает в себя как информацию уже известную учащимся, так и информацию абсолютно новую. Вместе с текстом учащиеся получают вопросы, ответы на которые необходимо в этом тексте найти.

Многоугольники. Виды многоугольников.

Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый нам с детства треугольник таит в себе немало интересного и загадочного.

Помимо уже известных нам видов треугольников, разделяемых по сторонам (разносторонний, равнобедренный, равносторонний) и углам (остроугольный, тупоугольный, прямоугольный) треугольник относится к большому семейству многоугольников, выделяемых среди множества различных геометрических фигур на плоскости.

Слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”. Но для характеристики фигуры этого не достаточно.

Ломаной А1А2…Аn называется фигура, которая состоит из точек А1,А2,…Аn и соединяющих их отрезков А1А2, А2А3,…. Точки называются вершинами ломаной, а отрезки звеньями ломаной. (РИС.1)

Ломаная называется простой, если она не имеет самопересечений (рис.2,3).

Ломаная называется замкнутой, если у нее концы совпадают. Длиной ломаной называется сумма длин ее звеньев (рис.4)

Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой (рис.5).

Подставьте в слове “многоугольник” вместо части “много” конкретное число, например 3. Вы получите треугольник. Или 5. Тогда - пятиугольник. Заметим, что, сколько углов, столько и сторон, поэтому эти фигуры вполне можно было бы назвать и многосторонниками.

Вершины ломаной называются вершинами многоугольника, а звенья ломаной – сторонами многоугольника.

Многоугольник разбивает плоскость на две области: внутреннюю и внешнюю (рис.6).

Плоским многоугольником или многоугольной областью называется конечная часть плоскости, ограниченная многоугольником.

Две вершины многоугольника являющиеся концами одной стороны называются соседними. Вершины, не являющиеся концами одной стороны – несоседние.

Многоугольник с n вершинами, а значит, и с n сторонами называется n-угольником.

Хотя наименьшее число сторон многоугольника – 3. Но треугольники, соединяясь, друг с другом, могут образовывать другие фигуры, которые в свою очередь также являются многоугольниками.

Отрезки, соединяющие не соседние вершины многоугольника, называются диагоналями.

Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону. При этом сама прямая считается принадлежащей ПОЛУПЛОСКОСТИ

Углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.

Докажем теорему (о сумме углов выпуклого n – угольника): Сумма углов выпуклого n – угольника равна 1800*(n - 2).

Доказательство. В случае n=3 теорема справедлива. Пусть А1А2…А n – данный выпуклый многоугольник и n>3. Проведем в нем (из одной вершины) диагонали. Так как многоугольник выпуклый, то эти диагонали разбивают его на n – 2 треугольника. Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов каждого треугольника равна 1800, а число этих треугольников n – 2. Поэтому сумма углов выпуклого n – угольника А1А2…А n равна 1800* (n - 2). Теорема доказана.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Так что квадрат можно назвать по-другому – правильным четырехугольником. Равносторонние треугольники также являются правильными. Такие фигуры давно интересовали мастеров, украшавших здания. Из них получались красивые узоры, например на паркете. Но не из всех правильных многоугольников можно было сложить паркет. Из правильных восьмиугольников паркет сложить нельзя. Дело в том, что у них каждый угол равен 1350.И если какая – нибудь точка является вершиной двух таких восьмиугольников, то на их долю придется 2700 , и третьему восьмиугольнику там поместиться негде: 3600 - 2700 =900 .Но для квадрата этого достаточно. Поэтому можно сложить паркет из правильных восьмиугольников и квадратов.

Правильными бывают и звезды. Наша пятиконечная звезда – правильная пятиугольная звезда. А если повернуть квадрат вокруг центра на 450 , то получится правильная восьмиугольная звезда.

Что называется ломаной? Объясните, что такое вершины и звенья ломаной.

Какая ломаная называется простой?

Какая ломаная называется замкнутой?

Что называется многоугольником? Что называется вершинами многоугольника? Что называется сторонами многоугольника?

Какой многоугольник называется плоским? Приведите примеры многоугольников.

Что такое n – угольник?

Объясните, какие вершины многоугольника – соседние, а какие нет.

Что такое диагональ многоугольника?

Какой многоугольник называется выпуклым?

Объясните, какие углы многоугольника внешние, а какие внутренние?

Какой многоугольник называется правильным? Приведите примеры правильных многоугольников.

Чему равна сумма углов выпуклого n-угольника? Докажите.

Учащиеся работают с текстом, ищут ответы на поставленные вопросы, после чего формируются экспертные группы, работа в которых идет по одним и тем же вопросам: учащиеся выделяют главное, составляют опорный конспект, представляют информацию одной из графических форм. По окончании работы учащиеся возвращаются в свои рабочие группы.

3.Стадия рефлексии-

а) оценка своих знаний, вызов к следующему шагу познания;

б) осмысление и присвоение полученной информации.

Прием: исследовательская работа.

Формы работы: индивидуальная->парная->групповая.

В рабочих группах оказываются специалисты по ответам на каждый из разделов предложенных вопросов.

Вернувшись в рабочую группу, эксперт знакомит других членов группы с ответами на свои вопросы. В группе происходит обмен информацией всех участников рабочей группы. Таким образом, в каждой рабочей группе, благодаря работе экспертов, складывается общее представление по изучаемой теме.

Исследовательская работа учащихся – заполнение таблицы.

Правильные многоугольники Чертеж Кол-во сторон Кол-во вершин Сумма всех внутр.углов Градусная мера внутр. угла Градусная мера внешн.угла Количество диагоналей

А)треугольник

Б) четырехугольник

В)пятиуГольник

Г) шестиугольник

Д) n-угольник

Решение интересных задач по теме урока.

1)Сколько сторон имеет правильный многоугольник, каждый из внутренних углов которого равен 1350?

2)В некотором многоугольнике все внутренние углы равны между собой. Может ли сумма внутренних углов этого многоугольника равняться: 3600, 3800?

3)Можно ли построить пятиугольник с углами 100,103,110,110,116 градусов?

Подведение итогов урока.

Запись домашнего задания: СТР66-72 №15,17 И ЗАДАЧА:в ЧЕТЫРЕХУГОЛЬНИКЕ, ПРОВЕДИТЕ ПРЯМУЮ ТАК, ЧТОБЫ ОНА РАЗДЕЛИЛА ЕГО НА ТРИ ТРЕУГОЛЬНИКА.

Рефлексия в виде тестов (на интерактивной доске)

Треугольник, квадрат, шестиугольник - эти фигуры известны практически всем. Но вот о том, что такое правильный многоугольник, знает далеко не каждый. А ведь это все те же Правильным многоугольником называют тот, что имеет равные между собой углы и стороны. Таких фигур очень много, но все они имеют одинаковые свойства, и к ним применимы одни и те же формулы.

Свойства правильных многоугольников

Любой правильный многоугольник, будь то квадрат или октагон, может быть вписан в окружность. Это основное свойство часто используется при построении фигуры. Кроме того, окружность можно и вписать в многоугольник. При этом количество точек соприкосновения будет равняться количеству его сторон. Немаловажно, что окружность, вписанная в правильный многоугольник, будет иметь с ним общий центр. Эти геометрические фигуры подчинены одним теоремам. Любая сторона правильного n-угольника связана с радиусом описанной около него окружности R. Поэтому ее можно вычислить, используя следующую формулу: а = 2R ∙ sin180°. Через можно найти не только стороны, но и периметр многоугольника.

Как найти число сторон правильного многоугольника

Любой состоит из некоторого числа равных друг другу отрезков, которые, соединяясь, образуют замкнутую линию. При этом все углы образовавшейся фигуры имеют одинаковое значение. Многоугольники делятся на простые и сложные. К первой группе относятся треугольник и квадрат. Сложные многоугольники имеют большее число сторон. К ним также относят звездчатые фигуры. У сложных правильных многоугольников стороны находят путем вписывания их в окружность. Приведем доказательство. Начертите правильный многоугольник с произвольным числом сторон n. Опишите вокруг него окружность. Задайте радиус R. Теперь представьте, что дан некоторый n-угольник. Если точки его углов лежат на окружности и равны друг другу, то стороны можно найти по формуле: a = 2R ∙ sinα: 2.

Нахождение числа сторон вписанного правильного треугольника

Равносторонний треугольник - это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон. Для этого будем использовать способ нахождения через формулу а = х: cosα, где х - медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х: cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота. При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х: cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c: 2=√(х: cosα)^2 - (х^2) = √x^2 (1 - cos^2α) : cos^2α = x ∙ tgα. Тогда c = 2xtgα. Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Вычисление сторон квадрата, вписанного в окружность

Как и любой другой вписанный правильный многоугольник, квадрат имеет равные стороны и углы. К нему применяются те же формулы, что и к треугольнику. Вычислить стороны квадрата можно через значение диагонали. Рассмотрим этот способ более детально. Известно, что диагональ делит угол пополам. Изначально его значение было 90 градусов. Таким образом, после деления образуются два Их углы при основании будут равны 45 градусов. Соответственно каждая сторона квадрата будет равна, то есть: а = в = с = д = е ∙ cosα = е√2: 2, где е - это диагональ квадрата, или основание образовавшегося после деления прямоугольного треугольника. Это не единственный способ нахождения сторон квадрата. Впишем эту фигуру в окружность. Зная радиус этой окружности R, найдем сторону квадрата. Будем вычислять ее следующим образом a4 = R√2. Радиусы правильных многоугольников вычисляют по формуле R = а: 2tg (360 o: 2n), где а - длина стороны.

Как вычислить периметр n-угольника

Периметром n-угольника называют сумму всех его сторон. Вычислить его несложно. Для этого необходимо знать значения всех сторон. Для некоторых видов многоугольников существуют специальные формулы. Они позволяют найти периметр намного быстрее. Известно, что любой правильный многоугольник имеет равные стороны. Поэтому для того, чтобы вычислить его периметр, достаточно знать хотя бы одну из них. Формула будет зависеть от количества сторон фигуры. В общем, она выглядит так: Р = an, где а - значение стороны, а n - количество углов. Например, чтобы найти периметр правильного восьмиугольника со стороной 3 см, необходимо умножить ее на 8, то есть Р = 3 ∙ 8 = 24 см. Для шестиугольника со стороной 5 см вычисляем так: Р = 5 ∙ 6 = 30 см. И так для каждого многоугольника.

Нахождение периметра параллелограмма, квадрата и ромба

В зависимости от того, сколько сторон имеет правильный многоугольник, вычисляется его периметр. Это намного облегчает поставленную задачу. Ведь в отличие от прочих фигур, в этом случае не нужно искать все его стороны, достаточно одной. По этому же принципу находим периметр у четырехугольников, то есть у квадрата и ромба. Несмотря на то что это разные фигуры, формула для них одна Р = 4а, где а - сторона. Приведем пример. Если сторона ромба или квадрата равна 6 см, то находим периметр следующим образом: Р = 4 ∙ 6 = 24 см. У параллелограмма равны только противоположные стороны. Поэтому его периметр находят, используя другой способ. Итак, нам необходимо знать длину а и ширину в фигуры. Затем применяем формулу Р = (а + в) ∙ 2. Параллелограмм, у которого равны все стороны и углы между ними, называется ромб.

Нахождение периметра равностороннего и прямоугольного треугольника

Периметр правильного можно найти по формуле Р = 3а, где а - длина стороны. Если она неизвестна, ее можно найти через медиану. В прямоугольном треугольнике равное значение имеют только две стороны. Основание можно найти через теорему Пифагора. После того как станут известны значения всех трех сторон, вычисляем периметр. Его можно найти, применяя формулу Р = а + в + с, где а и в - равные стороны, а с - основание. Напомним, что в равнобедренном треугольнике а = в = а, значит, а + в = 2а, тогда Р = 2а + с. Например, сторона равнобедренного треугольника равна 4 см, найдем его основание и периметр. Вычисляем значение гипотенузы по теореме Пифагора с = √а 2 + в 2 = √16+16 = √32 = 5,65 см. Вычислим теперь периметр Р = 2 ∙ 4 + 5,65 = 13,65 см.

Как найти углы правильного многоугольника

Правильный многоугольник встречается в нашей жизни каждый день, например, обычный квадрат, треугольник, восьмиугольник. Казалось бы, нет ничего проще, чем построить эту фигуру самостоятельно. Но это просто только на первый взгляд. Для того чтобы построить любой n-угольник, необходимо знать значение его углов. Но как же их найти? Еще ученые древности пытались построить правильные многоугольники. Они догадались вписать их в окружности. А потом на ней отмечали необходимые точки, соединяли их прямыми линиями. Для простых фигур проблема построения была решена. Формулы и теоремы были получены. Например, Эвклид в своем знаменитом труде «Начало» занимался решением задач для 3-, 4-, 5-, 6- и 15-угольников. Он нашел способы их построения и нахождения углов. Рассмотрим, как это сделать для 15-угольника. Сначала необходимо рассчитать сумму его внутренних углов. Необходимо использовать формулу S = 180⁰(n-2). Итак, нам дан 15-угольник, значит, число n равно 15. Подставляем известные нам данные в формулу и получаем S = 180⁰(15 - 2) = 180⁰ х 13 = 2340⁰. Мы нашли сумму всех внутренних углов 15-угольника. Теперь необходимо получить значение каждого из них. Всего углов 15. Делаем вычисление 2340⁰: 15 = 156⁰. Значит, каждый внутренний угол равен 156⁰, теперь при помощи линейки и циркуля можно построить правильный 15-угольник. Но как быть с более сложными n-угольниками? Много веков ученые бились над решением этой проблемы. Оно было найдено только лишь в 18-м веке Карлом Фридрихом Гауссом. Он смог построить 65537-угольник. С этих пор проблема официально считается полностью решенной.

Расчет углов n-угольников в радианах

Конечно, есть несколько способов нахождения углов многоугольников. Чаще всего их вычисляют в градусах. Но можно выразить их и в радианах. Как это сделать? Необходимо действовать следующим образом. Сначала выясняем число сторон правильного многоугольника, затем вычитаем из него 2. Значит, мы получаем значение: n - 2. Умножьте найденную разность на число п («пи» = 3,14). Теперь остается только разделить полученное произведение на число углов в n-угольнике. Рассмотрим данные вычисления на примере все того же пятнадцатиугольника. Итак, число n равно 15. Применим формулу S = п(n - 2) : n = 3,14(15 - 2) : 15 = 3,14 ∙ 13: 15 = 2,72. Это, конечно же, не единственный способ рассчитать угол в радианах. Можно просто разделить размер угла в градусах на число 57,3. Ведь именно столько градусов эквивалентно одному радиану.

Расчет значения углов в градах

Помимо градусов и радиан, значение углов правильного многоугольника можно попробовать найти в градах. Делается это следующим образом. Из общего количества углов вычитаем 2, делим полученную разность на число сторон правильного многоугольника. Найденный результат умножаем на 200. К слову сказать, такая единица измерения углов, как грады, практически не используется.

Расчет внешних углов n-угольников

У любого правильного многоугольника, кроме внутреннего, можно вычислить еще и внешний угол. Его значение находят так же, как и для остальных фигур. Итак, чтобы найти внешний угол правильного многоугольника, необходимо знать значение внутреннего. Далее, нам известно, что сумма этих двух углов всегда равна 180 градусам. Поэтому вычисления делаем следующим образом: 180⁰ минус значение внутреннего угла. Находим разность. Она и будет равняться значению смежного с ним угла. Например, внутренний угол квадрата равен 90 градусов, значит, внешний будет составлять 180⁰ - 90⁰ = 90⁰. Как мы видим, найти его несложно. Внешний угол может принимать значение от +180⁰ до, соответственно, -180⁰.

Что называется многоугольником? Виды многоугольников. МНОГОУГОЛЬНИК, плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах). Определение. Многоугольник - это геометрическая фигура, ограниченная со всех сторон замкнутой ломаной линией, состоящая из трех и более отрезков (звеньев). Треугольник безусловно является многоугольником. А многоугольник — это фигура, у которой от пяти углов и больше.

Определение. Четырехугольник - это плоская геометрическая фигура, состоящая из четырех точек (вершин четырехугольника) и четырех последовательно соединяющих их отрезков (сторон четырехугольника).

Прямоугольник - это четырехугольник, у которого все углы прямые. Они называются в соответствии с числом сторон или вершин: ТРЕУГОЛЬНИК (трехсторонний); ЧЕТЫРЕХУГОЛЬНИК (четырехсторонний); ПЯТИУГОЛЬНИК (пятисторонний) и т.д. В элементарной геометрии М. называется фигура,ограниченная прямыми линиями, называемыми сторонами. Точки, в которыхстороны пересекаются, называются вершинами. У многоугольника углов больше, чем три. Так принято или условлено.

Треугольник — он и есть треугольник. И четырехугольник тоже не многоугольник, да и четырехугольником не зовется — это либо квадрат, либо ромб, либо трапеция. Тот факт многоугольник с тремя сторонами и тремя углами имеет собственное название «треугольник» не лишает его статуса многоугольника.

Смотреть что такое «МНОГОУГОЛЬНИК» в других словарях:

Мы узнаем, что эта фигура ограничена замкнутой ломаной, которая в свою очередь бывает простой, замкнутой. Поговорим о том, что многоугольники бывают плоскими, правильными, выпуклыми. Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый нам с детства треугольник таит в себе немало интересного и загадочного.

Хотя конечно фигура, состоящая из трёх углов тоже может считаться многоугольником

Но для характеристики фигуры этого не достаточно. Ломаной А1А2…Аn называется фигура, которая состоит из точек А1,А2,…Аn и соединяющих их отрезков А1А2, А2А3,…. Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой (рис.5). Подставьте в слове “многоугольник” вместо части “много” конкретное число, например 3. Вы получите треугольник. Заметим, что, сколько углов, столько и сторон, поэтому эти фигуры вполне можно было бы назвать и многосторонниками.

Пусть А1А2…А n – данный выпуклый многоугольник и n>3. Проведем в нем (из одной вершины) диагонали

Сумма углов каждого треугольника равна 1800, а число этих треугольников n – 2. Поэтому сумма углов выпуклого n – угольника А1А2…А n равна 1800* (n — 2). Теорема доказана. Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине.

В четырехугольнике, проведите прямую так, чтобы она разделила его на три треугольника

У четырехугольника никогда на одной прямой не лежат три вершины. Слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”. Ломаная называется простой, если она не имеет самопересечений (рис.2,3).

Длиной ломаной называется сумма длин ее звеньев (рис.4). В случае n=3 теорема справедлива. Так что квадрат можно назвать по-другому – правильным четырехугольником. Такие фигуры давно интересовали мастеров, украшавших здания.

Число вершин равняется числусторон. Ломаная называется замкнутой, если у нее концы совпадают. Из них получались красивые узоры, например на паркете. Наша пятиконечная звезда – правильная пятиугольная звезда.

Но не из всех правильных многоугольников можно было сложить паркет. Рассмотрим подробнее два вида многоугольников: треугольник и четырехугольник. Многоугольник у которого все внутренние углы равны называется правильным. Многоугольники называются в соответствии с числом его сторон или вершин.

Свойства многоугольников

Многоугольник - это геометрическая фигура, обычно определяется как замкнутая ломаная без самопересечений (простой многоугольник (рис. 1а)), однако иногда самопересечения допускаются (тогда многоугольник не является простым).

Вершины ломаной называются вершинами многоугольника, а отрезки - сторонами многоугольника. Вершины многоугольника называются соседними, если они являются концами одной из его сторон. Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.

Углом (или внутренним углом) выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, при этом угол считается со стороны многоугольника. В частности угол может превосходить 180° если многоугольник невыпуклый.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разница между 180° и внутренним углом. Из каждой вершины -угольника при > 3 выходят - 3 диагонали, поэтому общее число диагоналей -угольника равно.

Многоугольник с тремя вершинами называется треугольником, с четырьмя - четырёхугольником, с пятью - пятиугольником и т.д.

Многоугольник с n вершинами называется n- угольником.

Плоским многоугольником называется фигура, которая состоит из многоугольника и ограниченной им конечной части площади.

Многоугольник называют выпуклым, если выполнено одно из следующих (эквивалентных) условий:

  • 1. он лежит по одну сторону от любой прямой, соединяющей его соседние вершины. (т.е. продолжения сторон многоугольника не пересекают других его сторон);
  • 2. он является пересечением (т.е. общей частью) нескольких полуплоскостей;
  • 3. любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и пентагон.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности

Правильный многоугольник - это многоугольник, у которого все углы и все стороны равны между собой.

Свойства многоугольников:

1 Каждая диагональ выпуклого -угольника, где >3, разлагает его на два выпуклых многоугольника.

2 Сумма всех углов выпуклого -угольника равна.

Д-во: Теорему докажем методом математической индукции. При = 3 она очевидна. Предположим, что теорема верна для -угольника, где <, и докажем ее для -угольника.

Пусть- данный многоугольник. Проведем диагональ этого многоугольника. По теореме 3 многоугольник разложен на треугольник и выпуклый -угольник (рис. 5). По предположению индукции. С другой стороны, . Складывая эти равенства и учитывая, что ( - внутренний луч угла ) и (- внутренний луч угла), получаем.При получаем: .

3 Около любого правильного многоугольника можно описать окружность, и притом только одну.

Д-во: Пусть правильный многоугольник, а и - биссектрисы углов, и (рис. 150). Так как, то, следовательно, * 180° < 180°. Отсюда следует, что биссектрисы и углов и пересекаются в некоторой точке О. Докажем, что O = ОА 2 = О =… = ОА п . Треугольник О равнобедренный, поэтому О = О . По второму признаку равенства треугольников, следовательно, О = О . Аналогично доказывается, что О = О и т.д. Таким образом, точка О равноудалена от всех вершин многоугольника, поэтому окружность с центром О радиуса О является описанной около многоугольника.

Докажем теперь, что описанная окружность только одна. Рассмотрим какие-нибудь три вершины многоугольника, например, А 2 , . Так как через эти точки проходит только одна окружность, то около многоугольника нельзя описать более чем одну окружность.

  • 4 В любой правильный многоугольник можно вписать окружность и притом только одну.
  • 5 Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.
  • 6 Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.
  • 7 Симметрия:

Говорят, что фигура обладает симметрией (симметрична), если существует такое движение (не тождественное), переводящее эту фигуру в себя.

  • 7.1. Треугольник общего вида не имеет осей или центров симметрии, он несимметричен. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии: серединный перпендикуляр к основанию.
  • 7.2. Равносторонний треугольник имеет три оси симметрии (серединные перпендикуляры к сторонам) и поворотную симметрию относительно центра с углом поворота 120°.

7.3 У любого правильного n-угольника есть n осей симметрии, все они проходят через его центр. Он также имеет поворотную симметрию относительно центра с углом поворота.

При четном n одни оси симметрии проходят через противоположные вершины, другие - через середины противоположных сторон.

При нечетном n каждая ось проходит через вершину и середину противоположной стороны.

Центр правильного многоугольника с четным числом сторон является его центром симметрии. У правильного многоугольника с нечетным числом сторон центра симметрии нет.

8 Подобие:

При подобии и -угольник переходит в -угольник, полуплоскость - в полуплоскость, поэтому выпуклый n -угольник переходит в выпуклый n -угольник.

Теорема: Если стороны и углы выпуклых многоугольников иудовлетворяют равенствам:

где - коэффициент подия

то эти многоугольники подобны.

  • 8.1 Отношение периметров двух подобных многоугольников равно коэффициенту подобия.
  • 8.2. Отношение площадей двух выпуклых подобных многоугольников равно квадрату коэффициента подобия.

многоугольник треугольник периметр теорема