Транзистор npn принцип работы. Принципы работы транзистора

Когда-то транзистором называли радиоприемник, но речь в нашей статье пойдет не о радиоприемнике. Так что же это такое транзистор и как он работает.

Есть такой класс материалов, за свои свойства названный полупроводниками. Отличительной их особенностью является проводимость - они могут быть как проводниками электрического тока, так и диэлектриками, т.е. изоляторами и не проводить электрический ток.

Вот такой материал используется для изготовления транзистора - широко применяющегося в промышленности и служащего основой почти всей современной электроники.

Не касаясь технологии изготовления, типов транзисторов, их применения, просто отметим, что существуют транзисторы разных типов, например, npn транзистор. Такое название он получил из-за используемого материала и типа проводимости. Того, что сказано, пока достаточно и углубляться в технологию изготовления и разнообразие транзисторов сейчас не будем.

Как работает транзистор? Он предназначен для управления электрическим током, конструктивно изготавливается в металлическом или пластмассовом корпусе и имеет три вывода, называемые эмиттер, база, коллектор. Уже название выводов говорит об их назначении: эмиттер эмитирует электроны, база ими управляет, коллектор их собирает. Все эти процессы происходят внутри транзистора.

Чтобы понять, как работает транзистор, рассмотрим гораздо более простой пример - водопроводный кран.

У него тоже три вывода - по одному вода поступает в кран, по другому выливается из крана, третьим является вентиль, который управляет работой крана. Когда вентиль открыт, вода свободно протекает через кран, когда вентиль закрыт, вода не течет. Это имитация одного из вариантов того, как работает транзистор. Такой режим работы называется ключевой - транзистор открыт - протекает или закрыт, тогда ток не идет. Для открытия транзистора на базу подается напряжение, если напряжение есть, то транзистор открыт, если нет, то он закрыт. Все происходит, как в открыт - вода течет, вентиль закрыт - воды нет.

Выше была рассмотрена работа транзистора, когда он используется как ключ: либо закрыт, либо открыт. Однако существуют и другие режимы работы. Вновь в качестве примера рассмотрим водопроводный кран. Если немного приоткрыть вентиль, то вода из крана будет литься постоянно, и напор воды будет определяться тем, насколько сильно мы открыли кран.

Примерно такой же режим работы есть и у транзистора. На его базу поступает напряжение, он открывается, и через него идет ток. Меняя величину напряжения на базе, можно регулировать величину тока, проходящего через транзистор. Полная аналогия с положением вентиля на кране: больше открыт - больше льется воды (т.е. тока для транзистора); меньше открыт - меньше течет воды (тока для транзистора). Такой режим работы транзистора называется усилительным, когда при помощи небольшого напряжения, подаваемого на базу, можно управлять значительным током, снимаемым с коллектора.

В заключение надо отметить, что транзисторы могут быть разного типа, все определяется используемым при изготовлении материалом. Они могут отличаться по мощности, могут управлять и пропускать через себя значительные потоки электрического тока. Транзисторы могут быть разного конструктивного исполнения. Существуют и другие режимы работы транзисторов, отличающиеся от рассмотренных. Но основное представление о том, как работает транзистор, дано выше.

Все изложенное приблизительно, но все же позволяет понять работу транзистора. На самом деле работа транзистора происходит гораздо сложнее. Есть специальные параметры, используя которые можно по формулам рассчитать и задать необходимый режим работы, но это уже совсем иная тема для разговора и для другой статьи.

Биполярный транзистор.

Биполярный транзистор - электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока - основной "большой" ток, и управляющий "маленький" ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.


У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector иemitter ). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.


Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы - дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.


Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE - 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет "дотянуться" своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.


В итоге мы получаем два тока: маленький - от базы к эмиттеру I BE , и большой - от коллектора к эмиттеру I CE .

Если увеличить напряжение на базе, то в прослойке P собереться еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом,при небольшом изменении тока базы I B , сильно меняеться ток коллектора I С . Так и происходитусиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h21e , в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.


2. Расчет входного тока базы I b

Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно - I bmax и I bmin .

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить - около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).

Посчитаем I bmax и I bmin с помощью закона Ома:


2. Расчет выходного тока коллектора I С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).


3. Расчет выходного напряжения V out

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз - далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.


Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

    Режим отсечки (cut off mode).

    Активный режим (active mode).

    Режим насыщения (saturation mode).

    Инверсный ражим (reverse mode).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V - 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначаетсяβ , hfe или h21e , в зависимости от специфики расчетов, проводимых с транзисторов.

β - величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий - в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше - тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость - проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).

Мы узнали как устроен транзистор, в общих чертах рассмотрели технологии изготовления германиевых и кремниевых транзисторов и разобрались как они маркируются .

Сегодня мы проведем несколько опытов и убедимся, что биполярный транзистор действительно состоит из двух диодов , включенных встречно, и что транзистор является усилителем сигнала .

Нам понадобится маломощный германиевый транзистор структуры p-n-p из серии МП39 – МП42, лампа накаливания, рассчитанная на напряжение 2,5 Вольта и источник питания на 4 – 5 Вольт. Вообще, для начинающих радиолюбителей я рекомендую собрать небольшой регулируемый , с помощью которого Вы будете питать свои конструкции.

1. Транзистор состоит из двух диодов.

Чтобы убедиться в этом, соберем небольшую схему: базу транзистора VT1 соединим с минусом источника питания, а вывод коллектора с одним из выводов лампы накаливания EL . Теперь если второй вывод лампы соединить с плюсом источника питания, то лампочка загорится.

Лампочка загорелась потому, что на коллекторный переход транзистора мы подали прямое — пропускное напряжение, которое открыло коллекторный переход и через него потек прямой ток коллектора . Величина этого тока зависит от сопротивления нити накала лампы и внутреннего сопротивления источника питания.

А теперь рассмотрим эту же схему, но транзистор изобразим в виде пластины полупроводника.

Основные носители заряда в базе электроны , преодолевая p-n переход, попадают в дырочную область коллектора и становятся неосновными. Ставшие неосновными, электроны базы поглощаются основными носителями в дырочной области коллектора дырками . Таким же образом дырки из области коллектора, попадая в электронную область базы, становятся неосновными и поглощаются основными носителями заряда в базе электронами .

На контакт базы, соединенный с отрицательным полюсом источника питания, будет поступать практически неограниченное количество электронов , пополняя убывание электронов из области базы. А контакт коллектора, соединенный с положительным полюсом источника питания через нить накала лампы, способен принять такое же количество электронов, благодаря чему будет восстанавливаться концентрация дырок в области базы .

Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало, а значит, через коллекторный переход будет течь ток коллектора . И чем больший будет этот ток, тем ярче будет гореть лампа.

Лампочка будет гореть и в случае, если ее включить в цепь эмиттерного перехода. На рисунке ниже показан именно этот вариант схемы.


А теперь немного изменим схему и базу транзистора VT1 подключим к плюсу источника питания. В этом случае лампа гореть не будет, так как p-n переход транзистора мы включили в обратном направлении. А это значит, что сопротивление p-n перехода стало велико и через него течет лишь очень малый обратный ток коллектора Iкбо не способный раскалить нить накала лампы EL . В большинстве случаев этот ток не превышает нескольких микроампер.


А чтобы окончательно убедиться в этом, опять рассмотрим схему с транзистором, изображенным в виде пластины полупроводника.

Электроны, находящиеся в области базы , переместятся к плюсу источника питания, отдаляясь от p-n перехода. Дырки, находящиеся в области коллектора , также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится , отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей базы и коллектора присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через коллекторный переход будет протекать ток во много раз меньший, чем прямой, и этого тока не будет хватать, чтобы зажечь нить накала лампы.

2. Работа транзистора в режиме переключения.

Сделаем еще один опыт, показывающий один из режимов работы транзистора.
Между коллектором и эмиттером транзистора включим последовательно соединенные источник питания и ту же лампу накаливания. Плюс источника питания соединим с эмиттером, а минус через нить накала лампы с коллектором. Лампа не горит. Почему?


Все очень просто: если приложить напряжение питания между эмиттером и коллектором, то при любой полярности один из переходов окажется в прямом, а другой в обратном направлении и будет мешать прохождению тока. В этом не трудно убедиться, если взглянуть на следующий рисунок.

На рисунке видно, что эмиттерный переход база-эмиттер включен в прямом направлении и находится в открытом состоянии и готов принять неограниченное количество электронов. Коллекторный переход база-коллектор, наоборот, включен в обратном направлении и препятствует прохождению электронов к базе.

Отсюда следует, что основные носители заряда в области эмиттера дырки , отталкиваемые плюсом источника питания, устремляются в область базы и там взаимопоглощаются (рекомбинируют) с основными носителями заряда в базе электронами . В момент насыщения, когда с той и с другой стороны свободных носителей заряда не останется, их движение прекратится, а значит, перестает течь ток. Почему? Потому что со стороны коллектора не будет подпитки электронами.

Получается, что основные носители заряда в коллекторе дырки притянулись отрицательным полюсом источника питания, а некоторые из них взаимно поглотились электронами , поступающими со стороны минуса источника питания. А в момент насыщения, когда с обеих сторон не останется свободных носителей заряда, дырки, за счет своего преобладания в области коллектора, заблокируют дальнейший проход электронам к базе.

Таким-образом между коллектором и базой образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Конечно, благодаря магнитному полю и тепловому воздействию мизерный ток все же протекать будет, но сила этого тока так мала, что не способна раскалить нить накала лампы.

Теперь в схему добавим проволочную перемычку и ей замкнем базу с эмиттером. Лампочка, включенная в коллекторную цепь транзистора, опять не будет гореть. Почему?


Потому что при замыкании базы и эмиттера перемычкой коллекторный переход становится просто диодом, на который подается обратное напряжение. Транзистор находится в закрытом состоянии и через него идет лишь незначительный обратный ток коллектора Iкбо .

А теперь схему еще немного изменим и добавим резистор сопротивлением 200 – 300 Ом, и еще один источник напряжения в виде пальчиковой батарейки.
Минус батарейки соедините через резистор с базой транзистора, а плюс батарейки с эмиттером. Лампа загорелась.


Лампа загорелась потому, что мы подключили батарейку между базой и эмиттером, и тем самым подали на эмиттерный переход прямое отпирающее напряжение. Эмиттерный переход открылся и через него пошел прямой ток, который открыл коллекторный переход транзистора. Транзистор открылся и по цепи эмиттер-база-коллектор потек коллекторный ток , во много раз больший тока цепи эмиттер-база . И благодаря этому току лампочка загорелась.

Если же мы поменяем полярность батарейки и на базу подадим плюс, то эмиттерный переход закроется, а вместе с ним закроется и коллекторный переход. Через транзистор потечет обратный коллекторный ток Iкбо и лампочка потухнет.

Резистор ограничивает ток в базовой цепи. Если ток не ограничивать и на базу подать все 1,5 вольта, то через эмиттерный переход потечет слишком большой ток, в результате которого может произойти тепловой пробой перехода и транзистор выйдет из строя. Как правило, для германиевых транзисторов отпирающее напряжение составляет не более 0,2 вольта, а для кремниевых не более 0,7 вольта.

И опять разберем эту же схему, но транзистор представим в виде пластины полупроводника.

При подаче отпирающего напряжения на базу транзистора открывается эмиттерный переход и свободные дырки из эмиттера начинают взаимопоглощаться с электронами базы , создавая небольшой прямой базовый ток .

Но не все дырки, вводимые из эмиттера в базу, рекомбинируют с ее электронами. Как правило, область базы делается тонкой , а при изготовлении транзисторов структуры p-n-p концентрацию дырок в эмиттере и коллекторе делают во много раз большей, чем концентрацию электронов в базе , поэтому лишь малая часть дырок поглощается электронами базы.

Основная же масса дырок эмиттера проходит базу и попадает под действие более высокого отрицательного напряжения действующего в коллекторе, и уже вместе с дырками коллектора перемещается к его отрицательному контакту, где и взаимопоглощается вводимыми электронами отрицательным полюсом источника питания GB .

В результате этого сопротивление коллекторной цепи эмиттер-база-коллектор уменьшится и в ней течет прямой коллекторный ток во много раз превышающий базовый ток цепи эмиттер-база .

Чем больше больше дырок вводится из эмиттера в базу, тем значительнее ток в коллекторной цепи. И, наоборот, чем меньше отпирающее напряжение на базе, тем меньший ток в коллекторной цепи.

Если в момент работы транзистора в базовую и коллекторную цепи включить миллиамперметр, то при закрытом транзисторе токов в этих цепях практически не было бы.

При открытом же транзисторе ток базы составлял бы 2-3 mA, а ток коллектора был бы около 60 – 80 mA. Все это говорит о том, что транзистор может быть усилителем тока .

В этих опытах транзистор находился в одном из двух состояний: открытом или закрытом. Переключение транзистора из одного состояния в другое происходило под действием отпирающего напряжения на базе . Такой режим транзистора называют режимом переключения или ключевым . Такой режим работы транзистора используют в приборах и устройствах автоматики.

На этом закончим, а в следующей части разберем работу транзистора в на примере простого усилителя звуковой частоты, собранного на одном транзисторе.
Удачи!

Литература:

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Е. Айсберг — Транзистор?.. Это очень просто! 1964г.

Понравилась статья - поделитесь с друзьями:

35 комментариев

Транзистором называется активный полупроводниковый прибор, при помощи которого осуществляется усиление, преобразование и генерирование электрических колебаний. Такое применение транзистора можно наблюдать в аналоговой технике. Кроме этого применяются и в цифровой технике, где они используются в ключевом режиме. Но в цифровой аппаратуре почти все транзисторы «спрятаны» внутри интегральных микросхем, причем в огромных количествах и в микроскопических размерах.

Здесь мы уже не будем слишком подробно останавливаться на электронах, дырках и атомах, о которых уже было рассказано в предыдущих частях статьи, но кое-что из этого, при необходимости, все же придется вспомнить.

Полупроводниковый диод состоит из одного p-n перехода, о свойствах которого было рассказано . Транзистор, как известно, состоит из двух переходов, поэтому можно рассматривать как предшественник транзистора, или его половину.

Если p-n переход находится в состоянии покоя, то дырки и электроны распределяются, как показано на рисунке 1, образуя потенциальный барьер. Постараемся не забыть условные обозначения электронов, дырок и ионов, показанные на этом рисунке.

Рисунок 1.

Как устроен биполярный транзистор

Устройство биполярного транзистора на первый взгляд просто. Для этого достаточно на одной пластине полупроводника, называемой базой, создать сразу два p-n перехода. Некоторые способы создания p-n перехода были описаны , поэтому здесь повторяться не будем.

Если проводимость базы будет типа p, то полученный транзистор будет иметь структуру n-p-n (произносится как «эн-пэ-эн»). А когда в качестве базы используется пластина n типа, то получается транзистор структуры p-n-p («пэ-эн-пэ»).

Уж коль скоро речь зашла о базе, то следует обратить внимание на такую вещь: полупроводниковая пластина, используемая в качестве базы очень тонкая, намного тоньше, чем эмиттер и коллектор. Это утверждение следует запомнить, поскольку оно понадобится в процессе объяснения работы транзистора.

Естественно, что для соединения с «внешним миром» от каждой области p и n выходит проволочный вывод. Каждый из них имеет название области, к которой соединен: эмиттер, база, коллектор. Такой транзистор называется биполярным, поскольку в нем используются два типа носителей заряда, - дырки и электроны. Схематическое устройство транзисторов обоих типов показано на рисунке 2.

Рисунок 2.

В настоящее время в большей степени применяются кремниевые транзисторы. Германиевые транзисторы почти полностью вышли из употребления, будучи вытесненными кремниевыми, поэтому дальнейший рассказ будет именно о них, хотя иногда будут упоминаться и германиевые. Большинство кремниевых транзисторов имеют структуру n-p-n, поскольку эта структура более технологична в производстве.

Комплементарные пары транзисторов

Для германиевых транзисторов, видимо, более технологичной была структура p-n-p, поэтому германиевые транзисторы большей частью имели именно эту структуру. Хотя, в составе комплементарных пар (близкие по параметрам транзисторы, которые отличались лишь типом проводимости) выпускались и германиевые транзисторы разной проводимости, например ГТ402 (p-n-p) и ГТ404 (n-p-n).

Такая пара применялась в качестве выходных транзисторов в УНЧ различной радиоаппаратуры. И если несовременные германиевые транзисторы ушли в историю, то комплементарные пары кремниевых транзисторов выпускаются до сих пор, начиная от транзисторов в SMD - корпусах и вплоть до мощных транзисторов для выходных каскадов УНЧ.

Кстати, звуковые усилители на германиевых транзисторах меломанами воспринимались почти как ламповые. Ну, может чуть и похуже, но много лучше, чем усилители на кремниевых транзисторах. Это просто для справки.

Как работает транзистор

Для того, чтобы понять, как работает транзистор нам снова придется вернуться в мир электронов, дырок, доноров и акцепторов. Правда сейчас это будет несколько проще, и даже интересней, чем в предыдущих частях статьи. Такое замечание пришлось сделать для того, чтобы не испугать читателя, позволить дочитать все это до конца.

На рисунке 3 сверху показано условное графическое обозначение транзисторов на электрических схемах, а ниже p-n переходы транзисторов представлены в виде полупроводниковых диодов, к тому же включенных встречно. Такое представление очень удобно при проверке транзистора мультиметром.

Рисунок 3.

А на рисунке 4 показано внутреннее устройство транзистора.

На этом рисунке придется немного задержаться, чтобы рассмотреть его поподробнее.

Рисунок 4.

Так пройдет ток или нет?

Здесь показано, как к транзистору структуры n-p-n подключен источник питания, причем именно в такой полярности, как он подключается в реальных устройствах к настоящим транзисторам. Но, если присмотреться повнимательней, то получается, что через два p-n перехода, через два потенциальных барьера ток не пройдет: как ни меняй полярность напряжения один из переходов обязательно оказывается в запертом, непроводящем, состоянии. Так что уж оставим пока все, как показано на рисунке и посмотрим, что же там происходит.

Неуправляемый ток

При включении источника тока, как показано на рисунке, переход эмиттер - база (n-p) находится в открытом состоянии и легко пропустит электроны в направлении слева - направо. После чего электроны столкнутся с закрытым переходом база эмиттер (p-n), который остановит это движение, дорога для электронов будет закрыта.

Но, как всегда и везде из всяких правил бывают исключения: некоторые особо шустрые электроны под воздействием температуры все-таки этот барьер сумеют преодолеть. Поэтому хоть и незначительный ток при таком включении все же будет. Этот незначительный ток называется начальным током или током насыщения. Последнее название вызвано тем, что в образовании этого тока участвуют всех свободные электроны, способные при данной температуре преодолеть потенциальный барьер.

Начальный ток неуправляемый, он имеется у любого транзистора, но в то же время мало зависит от внешнего напряжения. Если его, напряжение, повысить весьма значительно (в пределах разумного, обозначенного в справочниках), начальный ток особо не изменится. Зато тепловое воздействие на этот ток влияет весьма заметно.

Дальнейшее повышение температуры вызывает увеличение начального тока, что в свою очередь может привести к дополнительному нагреву p-n перехода. Такая тепловая нестабильность может привести к тепловому пробою, разрушению транзистора. Поэтому следует принимать меры по охлаждению транзисторов, и не прилагать предельных напряжений при повышенной температуре.

А теперь вспомним о базе

Описанное выше включение транзистора с оборванной базой нигде в практических схемах не применяется. Поэтому на рисунке 5 показано правильное включение транзистора. Для этого понадобилось подать на базу относительно эмиттера некоторое небольшое напряжение, причем в прямом направлении (вспомним диод, и еще раз посмотрим на рисунок 3).

Рисунок 5.

Если в случае с диодом все вроде бы понятно, - открылся и через него пошел ток, то в транзисторе происходят еще и другие события. Под действием эмиттерного тока электроны устремятся в базу с проводимостью p из эмиттера с проводимостью n. При этом часть электронов заполнят дырки, находящиеся в области базы и через базовый вывод протекает незначительный ток, - ток базы Iб. Вот тут как раз и следует вспомнить, что база тонкая и дырок в ней немного.

Остальные электроны, которым не хватило дырок в тонкой базе, устремляются в коллектор и будут извлечены оттуда более высоким потенциалом коллекторной батареи Eк-э. Под этим воздействием электроны преодолеют второй потенциальный барьер и через батарею вернутся в эмиттер.

Таким образом, небольшое напряжение, приложенное к переходу база - эмиттер, способствует открыванию перехода база - коллектор, смещенному в обратном направлении. Собственно в этом и заключается транзисторный эффект.

Остается только рассмотреть, как влияет это «небольшое напряжение», приложенное к базе, на ток коллектора, каковы их величины и соотношения. Но об этом рассказ в следующей части статьи про транзисторы.

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся Вам сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры. Времена, когда советские микросхемы были самыми большими в мире, минули, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра! Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор — прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки. Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий ), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором , базой и эмиттером . Устройство транзистора и его схематическое изображение показаны на рисунке ни же


Биполярный транзистор

Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.


Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.


Транзистор закрыт

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору. Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.


Транзистор открыт

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если вооружиться знаниями авторов нашей компании. Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили , обращайтесь в Заочник.