Как проверить неисправность кадровой развертки. Устранение неисправностей в генераторе кадровой развертки. Признаки, указывающие на неисправность БУ: тв не включается, не реагирует на кнопки управления и пульт, не регулируется громкость, яркость, контраст

Найти дефект гораздо сложнее, чем его устранить, особенно начинающему мастеру. Предложенная автором статьи универсальная методика позволит Вам быстро и эффективно провести диагностику современного телевизора.

C ЧЕГО НАЧАТЬ

При ремонте телевизионных приемников встречаются ситуации, когда телевизор не включается и не подает никаких признаков жизни. Это значительно затрудняет локализацию дефекта, особенно если учесть, что ремонтировать импортную технику часто приходится без принципиальных схем. Перед мастером встает задача выявить неисправность и устранить ее с наименьшими затратами времени и усилий. Для этого необходимо следовать определенной методике отыскания неисправностей.

В свою очередь, два внутренних кабеля также покрыты экраном, который соединен с внешней металлической частью вилки. Широко используемый способ для видеосвязи между устройствами - отправить сигнал яркости, красный сигнал и синий сигнал на монитор, каждый с другим разъемом, мы будем иметь меньшие потери, потому что монитор должен будет обработать только зеленый. В этом режиме для соединения используются три провода, но потери будут очень малы.

В этом процессе сигналы красного, зеленого и синего сигналов передаются на монитор через независимые кабели, не претерпевая трансформаций или модуляции, следовательно, отсутствие помех и потеря разрешения. Недостатком является количество проводов для передачи всех сигналов. Простейшее использование 4 проводов и один общий. Другой процесс использует 6 проводов и общий, два лишних провода отвечают за подключение вертикальных и горизонтальных импульсов синхронизации к монитору.

Если мастерская или частный мастер дорожит своей репутацией, необходимо начинать с чистки аппарата. Вооружившись мягкой кистью и пылесосом, следует произвести чистку внутренней поверхности корпуса, поверхности кинескопа и платы телевизионного приемника. После тщательной очистки производят внешний осмотр платы и элементов на ней. Иногда можно сразу определить место неисправности по вздувшимся или разорвавшимся конденсаторам, по обгоревшим резисторам или по прогоревшим насквозь транзисторам и микросхемам. Бывает, что после очистки кинескопа от пыли вместо прозрачной колбы мы видим молочно-белую внутреннюю поверхность (потеря вакуума).

Преобразование из одного процесса соединения в другой приведет только к потере и ухудшению сигнала и почти всегда к бесполезности такого процесса, если нет никаких стандартов между монитором и источником видео, что почти всегда не существует. Чем меньше преобразования, тем меньше потери. Предпочтительно искать устройства, которые уже имеют соответствующие выходы и входы и обеспечивают требуемое качество.

Если есть изображение, но нет звука, нужно проверить УНЧ или видеопроцессор

Типы сигналов и цифровых видеоподключений. С развитием цифровой технологии возникла необходимость в повышении производительности и оптимизации соединений между оборудованием. В цифровом транспортном слое мы пытались передавать аудио, видео и данные через один канал, таким образом, воспринимается легкость в соединении между системами по экономии кабелей. Другим преимуществом является помехоустойчивость, поскольку кабели передают цифровые сигналы. Существует несколько типов протоколов связи, некоторые из которых будут описаны ниже.

Значительно чаще визуальный осмотр не выявляет внешних признаков неисправных деталей. И тут возникает вопрос - с чего начать?

БЛОК ПИТАНИЯ

Наиболее целесообразно начать ремонт с проверки работоспособности блока питания. Для этого отключаем нагрузку (выходной каскад строчной развертки) и подключаем вместо нее лампу накаливания 220 В, 60...100 Вт.

Цифровые видеосигналы при копировании с одного устройства на другой через этот тип соединения не ухудшают ухудшение качества изображения. Таким образом, пара проводов, необязательно, добавляется к кабелю для этой цели, из чего вытекает наличие пробок с 4 и разъемами с 6 выводами. На рисунке 5 показан 4-контактный штекер и 6-контактный разъем. Потребительское и полупрофессиональное оборудование использует 4-контактный вариант: поскольку эти устройства, как правило, меньше, более мелкие вилки лучше подходят для них.

Также используется в некоторых моделях видеомикшеров. Кабели с этим типом сигнала не страдают от помех, которые могут быть сконструированы со значительным расширением. Горизонтальный выход, большой транзистор рядом с трансформатором; Осциллятор интегральной схемы. Горизонтальный выход - это силовой транзистор вблизи линейного трансформатора.

Обычно напряжение питания строчной развертки составляет 110...150 В в зависимости от размеров кинескопа. Просмотрев вторичные цепи, на плате рядом с импульсным трансформатором блока питания находим конденсатор фильтра, который чаще всего имеет емкость 47...100 мкФ и рабочее напряжение порядка 160 В. Рядом с фильтром находится выпрямитель напряжения питания строчной развертки. После фильтра напряжение поступает на выходной каскад через дроссель, ограничительный резистор или предохранитель, а иногда на плате стоит просто перемычка. Отпаяв этот элемент, мы отключим выходной каскад блока питания от каскада строчной развертки. Параллельно конденсатору подключаем лампу накаливания - имитатор нагрузки.

Линии также создают другие напряжения: фокусировка с регулировкой для контроля резкости изображения; экран с регулировкой яркости управления; и зажечь нить трубки. Трубчатая нить работает как с прямым, так и с переменным напряжением. Поскольку летательный аппарат работает с высокочастотным ССА, его ядром является феррит. Из-за экстремальных условий эксплуатации, это один из компонентов, наиболее подверженных сбоям внутри телевизора, тест обратного хода является фундаментальным, когда в этой области есть проблемы.

Это создаст магнитное поле, которое будет перемещать электроны слева направо на экране. Он имеет функцию блокировки 100 В В горизонтального выходного коллектора, предотвращая его переход на землю. Управляет шириной изображения. Чтобы проанализировать неисправности в этой цепи, стабилитрон штифта делать все выключен и проверяется, если в этой цепи есть аномалия.

При первом включении ключевой транзистор блока питания может выйти из строя из-за неисправности элементов обвязки. Для того чтобы этого не произошло, блок питания лучше включать через еще одну лампу накаливания мощностью 100...150 Вт, используемую в качестве предохранителя и включенную вместо выпаянного компонента. Если в схеме есть неисправные элементы и ток потребления будет большим, лампа загорится, и все напряжение упадет на ней. В такой ситуации необходимо, прежде всего, проверить входные цепи, сетевой выпрямитель, конденсатор фильтра и мощный транзистор блока питания. Если при включении лампа зажглась и сразу погасла или стала слабо светиться, то можно предположить, что блок питания исправен, и дальнейшую регулировку лучше производить без лампы.
Включив блок питания, замерьте напряжение на нагрузке. Внимательно посмотрите на плате, нет ли около блока питания резистора регулировки выходного напряжения. Обычно рядом с ним находится надпись, указывающая величину напряжения (110...150 В).

Признаки, указывающие на неисправность БУ: тв не включается, не реагирует на кнопки управления и пульт, не регулируется громкость, яркость, контрастность и другие параметры, не настраиваются или не сохраняются каналы



Защита от короткого замыкания выходного транзистора. Эта схема перемещает электронный луч сверху вниз на экран.

  • Вертикальный осциллятор.
  • Вертикальные регулировки.
Вертикальный осциллятор - Производит 50-или 60-дюймовый «пилообразный» сигнал. Конденсатор сцепления - пропускает сигнал и блокирует напряжение постоянного тока.

Если таких элементов на плате нет, обратите внимание на наличие контрольных точек. Иногда величину напряжения питания указывают рядом с выводом первичной обмотки строчного трансформатора. Если диагональ кинескопа 20...21", напряжение должно быть в диапазоне 110...130 В, а при размере кинескопа 25...29" диапазон напряжения питания обычно составляет 130...150В.
Если напряжение питания выше указанных значений, надо проверить целостность элементов первичной цепи блока питания и цепь обратной связи, которая служит для установки и стабилизации выходного напряжения. Следует также проверить электролитические конденсаторы. При высыхании их емкость значительно уменьшается, что приводит к неправильной работе схемы и повышению вторичных напряжений.
Например, в телевизоре Akai CT2107D при высыхании электролитического конденсатора С911 (47 мкФ, 50 В) напряжение во вторичной цепи вместо 115 В может возрасти до 210 В.
Если напряжения занижены, надо проверить вторичные цепи на наличие замыканий или больших утечек, целостность защитных диодов R2K, R2M в цепи питания строчной развертки и защитных диодов на 33 В в цепи питания кадровой развертки.

Например, в телевизоре Gold Star CKT 2190 при неисправном конденсаторе фильтра питания строчной развертки 33 мкФ, 160 В, имеющем большой ток утечки, напряжение на выходе вместо 115В составляло порядка 30 В.

В телевизоре Funai TV-2000A МК7 был пробит защитный диод R2M, что приводило к срабатыванию защиты, и телевизор не включался; в Funai TV-1400 МК10 пробой защитного диода на 33 В в цепи питания кадровой развертки также приводил к срабатыванию защиты.

СТРОЧНАЯ РАЗВЕРТКА

Разобравшись с блоком питания и убедившись, что он исправен, восстанавливаем соединение в цепи питания строчной развертки, убрав предварительно лампу, которую использовали вместо нагрузки.
Для первого включения телевизора желательно установить лампу накаливания, используемую вместо предохранителя.
При исправном выходном каскаде строчной развертки лампа при включении загорится на несколько секунд и погаснет или будет слабо светиться.

Если при включении лампа вспыхнула и продолжает гореть, нужно убедиться в исправности выходного транзистора строчной развертки. Если транзистор исправен, а высокого напряжения нет, убедитесь в наличии управляющих импульсов на базе выходного транзистора строчной развертки. Если импульсы есть и все напряжения в норме, можно предположить, что неисправен строчный трансформатор.
Иногда это сразу понятно по сильному нагреванию последнего, но достоверно сказать, исправен ли ТДКС, по внешним признакам очень трудно. Для того чтобы определить это точно, можно воспользоваться следующим методом. На коллекторную обмотку трансформатора подаем прямоугольные импульсы с частотой 1...10 кГц небольшой амплитуды (можно использовать выход сигнала калибровки осциллографа]. Туда же подключаем вход осциллографа.

При исправном трансформаторе максимальная амплитуда полученных продифференцированных импульсов должна быть не меньше амплитуды исходных прямоугольных импульсов.
Если ТДКС имеет короткозамкнутые витки, мы увидим короткие продифференцированные импульсы амплитудой в два и более раз меньше исходных прямоугольных. Этим методом также можно определять неисправность трансформаторов сетевых импульсных блоков питания.

Метод работает и без выпаивания трансформатора (естественно, надо убедиться в отсутствии короткого замыкания во вторичных цепях обвязки).
Еще одна неисправность строчной развертки, при которой блок питания не включается и лампа, включенная вместо предохранителя, ярко светится - пробой строчных отклоняющих катушек. Определить данную неисправность можно путем отсоединения катушек. Если после этого телевизор нормально включился, то, вероятно, неисправна отклоняющая система [ОС]. Чтобы в этом убедиться, замените отклоняющую систему на заведомо исправную. Телевизор при этом нужно включать на очень короткое время, чтобы избежать прожога кинескопа. Заменить отклоняющую систему не сложно. Лучше применить ОС от аналогичного кинескопа с диагональю такого же размера.

Автору приходилось устанавливать в телевизоре Funai 2000 МКЗ отклоняющую систему от телевизора Philips с диагональю 21". После установки новой ОС в телевизоре необходимо произвести регулировку сведения лучей с применением генератора телевизионных сигналов.

КАДРОВАЯ РАЗВЕРТКА

Если строчная развертка исправна, то на экране, как минимум, должна светится горизонтальная полоса, а при исправной кадровой развертке - полный растр. Если растра нет и на экране видна яркая горизонтальная полоса, следует регулировкой ускоряющего напряжения на ТДКС уменьшить яркость свечения экрана. Это необходимо для того, чтобы не прожечь люминофор кинескопа, и только после этого следует искать неисправность в кадровой развертке.

Диагностику в блоке кадровой развертки следует начинать с проверки питания задающего генератора и выходного каскада. Чаще всего питание берется с обмотки строчного трансформатора. Напряжение питания этих каскадов составляет 24...28 В. Напряжение подается через ограничивающий резистор, который и надо проверить в первую очередь. Частыми неисправностями в кадровой развертке являются пробой или обрыв выпрямительного диода и выход из строя микросхемы кадровой развертки. Редко, но все же встречается межвитковое замыкание в кадровых отклоняющих катушках.
При подозрении на отклоняющую систему лучше произвести ее проверку путем временного подключения заведомо исправной катушки. Контроль следует производить осциллографом, наблюдая импульсы прямо на кадровых катушках.

ЦЕПИ ПИТАНИЯ КИНЕСКОПА

Бывает, что блок питания и блок разверток исправны, а экран телевизора не светится. В этом случае нужно проверить напряжение накала, а при его наличии целостность нити накала кинескопа.
В практике автора было два случая, когда накальная обмотка строчного трансформатора была разорвана (телевизоры Sony и Waltham). He торопитесь менять строчный трансформатор. Для начала его следует аккуратно выпаять, очистить от пыли и внимательно осмотреть выводы накальной обмотки.

Иногда обрыв находится рядом с выводом под слоем эпоксидной смолы. Горячим паяльником аккуратно удаляем часть смолы и, если обрыв найден, устраняем его, после чего желательно место ремонта залить эпоксидной смолой.

Если обрыв найти не удалось, можно намотать накальную обмотку на сердечнике этого же трансформатора. Количество витков подбирают опытным путем (обычно это 3...5 витков, провод МГТФ 0,14]. Концы обмотки можно закрепить клеем или мастикой.

РАДИОКАНАЛ, БЛОК ЦВЕТНОСТИ, ВИДЕОУСИЛИТЕЛЬ

Если развертка в норме, экран светится, а изображения нет, можно определить неисправный блок по следующим признакам.
При отсутствии звука и изображения неисправность надо искать в радиоканале (тюнер и видеопроцессор).
При наличии звука и отсутствии изображения неисправность следует искать в видеоусилителе или блоке цветности.
При наличии изображения и отсутствии звука неисправен, скорее всего, видеопроцессор или усилитель низкой частоты.

После проверки напряжения питания радиоканала нужно подать видео- и аудиосигналы через низкочастотный вход (можно использовать генератор телесигналов или обычный видеомагнитофон).
Если изображения или звука нет, следует с помощью осциллографа проследить прохождение сигнала от источника, с которого подали сигнал, до катодов кинескопа или, если неисправен звуковой канал, до громкоговорителей и при необходимости заменить неисправный элемент.

Если после подачи сигнала на низкочастотный вход изображение и звук появились, то неисправность следует искать в предыдущих каскадах.
При проверке видеопроцессора надо подать сигнал ПЧ на вход ФСС с генератора или с выхода тюнера другого телевизора.

Если изображение и звук не появились, проверяем с помощью осциллографа путь прохождения сигнала и при необходимости меняем видеопроцессор (при замене микросхемы лучше сразу впаять панельку).
Если изображение и звук есть, то неисправность следует искать в тюнере или в его обвязке. Прежде всего надо проверить, поступаетли на тюнер питание.
Проверить исправность ключевых транзисторов, через которые поступает напряжение на тюнер при переключении диапазонов. Проследить, поступает ли на базы этих транзисторов сигнал от процессора управления, проверить величину и диапазон изменения напряжения настройки, которое должно меняться в пределах 0...31 В.

При диагностике неисправностей тюнера нужно подать сигнал с антенны на смеситель, минуя каскады ВЧ-усилителя. Для этого удобно пользоваться щупом, который можно изготовить из одноразового шприца с удаленным поршнем. В верхней части шприца следует установить антенное гнездо и через конденсатор 470 пФ соединить центральный контакт с иглой. Землю выводим обычным проводом; для удобства лучше к земляному проводу припаять зажим «крокодил». Щуп соединяем с антенным штекером и подаем сигнал на каскады тюнера.

С помощью такого щупа удалось определить неисправность в тюнере телевизора Grundig T55-640 OIRT. В этом аппарате был неисправен первый каскад УВЧ. Неисправность устранена путем подачи сигнала через конденсатор 10 пФ прямо с антенного гнезда, минуя первый транзистор, на следующий каскад тюнера. Качество изображения и чувствительность телевизора после такой переделки остались довольно высокими и даже не сказались на работе телетекста.

БЛОК УПРАВЛЕНИЯ

Особо надо остановиться на диагностике блока управления телевизором.
При его ремонте желательно пользоваться схемой или справочными данными на процессор управления. Если не удалось найти таких данных, можно попытаться скачать их с сайта производителя этих компонентов через Интернет.

Неисправность в блоке может проявляться следующим образом: телевизор не включается, телевизор не реагирует на сигналы с пульта или кнопок управления на передней панели, нет регулировок громкости, яркости, контрастности, насыщенности и других параметров, нет настройки на телевизионные программы, не сохраняются настройки в памяти, нет индикации параметров управления.
Если телевизор не включается, прежде всего проверяем наличие питания на процессоре и работу тактового генератора. Затем нужно определить, поступает ли сигнал с процессора управления на схему включения. Для этого необходимо выяснить принцип включения телевизора.
Телевизор можно включить с помощью управляющего сигнала, который запускает блок питания, или с помощью снятия блокировки с прохождения строчных запускающих импульсов с задающего генератора до блока строчной развертки.

Следует отметить, что на процессоре управления сигнал на включение обозначается либо Power, либо Stand-by. Если сигнал с процессора поступает, то неисправность следует искать в схеме включения, а если сигнала нет, придется менять процессор.

Если телевизор включается, но не реагирует на сигналы с пульта, нужно для начала проверить сам пульт. Проверить его можно на другом телевизоре такой же модели.
Для проверки пультов можно изготовить простое устройство, состоящее из фотодиода, подключенного к разъему СР-50. Устройство подключается к осциллографу, чувствительность осциллографа устанавливается в пределах 2...5 мВ. Пульт следует направить на светодиод с расстояния 1...5 см. На экране осциллографа при исправном пульте будут видны пачки импульсов. Если импульсов нет, диагностируем пульт.

Проверяем последовательно питание, состояние контактных дорожек и состояние контактных площадок на кнопках управления, наличие импульсов на выходе микросхемы пульта, исправность транзистора или транзисторов и исправность излучающих светодиодов.
Часто после падения пульта выходит из строя кварцевый резонатор. При необходимости меняем неисправный элемент или восстанавливаем контактные площадки и покрытие кнопок (это можно сделать, нанеся графит, например мягким карандашом, или наклеив на кнопки металлизированную пленку).
Если пульт исправен, нужно проследить прохождение сигнала от фотоприемника до процессора. Если сигнал доходит до процессора, а на его выходе ничего не меняется, можно предположить, что процессор неисправен.

Если телевизор не управляется с кнопок на передней панели, нужно сначала проверить исправность самих кнопок, а затем проследить наличие импульсов опроса и подачу их на шину управления.
Если телевизор включается с пульта и импульсы поступают на шину управления, а оперативные регулировки не работают, надо выяснить, с помощью какого вывода микропроцессор управляет той или иной регулировкой (громкость, яркость, контрастность, насыщенность). Далее проверить тракты данных регулировок, вплоть до исполнительных устройств.
Микропроцессор выдает управляющие сигналы с линейно изменяющейся скважностью, а поступая на исполнительные устройства, данные сигналы преобразуются в линейно изменяющееся напряжение.
Если сигнал поступает на исполнительное устройство, а реакции устройства на этот сигнал нет, то ремонту подлежит данное устройство, а если нет управляющего сигнала, замене подлежит процессор управления.

При отсутствии настройки на телевизионные программы сначала проверяем узел выбора поддиапазона. Обычно через буферы, реализованные на транзисторах, с процессора подается напряжение на выводы тюнера (0 или 12 В). Чаще всего выходят из строя именно эти транзисторы. Но бывает, что с процессора нет сигналов переключения поддиапазонов. В этом случае надо менять процессор.
Далее проверяем узел выработки напряжения настройки. Напряжение питания обычно поступает от вторичного выпрямителя со строчного трансформатора и составляет 100...130 В. Из этого напряжения с помощью стабилизатора формируется 30...31 В.
Микропроцессор управляет ключом, формирующим напряжение настройки 0...31 В с помощью сигнала с линейно изменяющейся скважностью, который после фильтров преобразуется в линейно изменяющееся напряжение.

Чаще всего выходит из строя стабилизатор 30...33 В. Если в телевизоре не сохраняются настройки в памяти, надо при любой настройке проверить обмен данными между процессором управления и микросхемой памяти по шинам CS, CLK, D1, DO. Если обмен есть, а значения параметров в памяти не хранятся, замените микросхему памяти.
Если в телевизоре нет индикации параметров управления, необходимо в режиме индикации проверить наличие пачек видеоимпульсов служебной информации на процессоре управления по цепям R, G, В и сигнал яркости, а также прохождение этих сигналов через буферы на видеоусилители.

В этой статье мы коснулись малой части неисправностей, которые встречаются в телевизионных приемниках. Но в любом случае методика их отыскания поможет Вам правильно определить и устранить неисправность и позволит сократить время, затраченное на ремонт.

"Ремонт электронной техники"

Регулировка и ремонт блока разверток телевизора

В телевизорах применяют два независимых устройства развертки изображения по горизонтали (строчная развертка) и вертикали (кадровая развертка). Перемещение луча и формирование телевизионного растра производится отклоняющей системой (ОС), состоящей из двух пар катушек, по которым проходят пилообразные токи. Катушки в отклоняющей системе размещены диаметрально противоположно, причем кадровые и строчные катушки сдвинуты относительно друг друга на 90°. Отклоняющие катушки включены в качестве нагрузок в выходные каскады соответствующих блоков разверток. Их работа основана на ключевом принципе формирования отклоняющего тока с использованием в качестве ключа электронной лампы, транзистора или тиристора. Частота развертки строк составляет 15625 Гц, полукадров - 50 Гц. Структурная схема разверток телевизора приведена на рис. 7.10.

Электронно-оптическая система кинескопа телевизионного приемника требует для формирования электронного луча определенных напряжений питания. Основными являются напряжения питания второго анода, фокусирующего электрода, первого анода и модулятора. Диапазон этих напряжений достаточно велик (25 кВ - 10 В) ив большинстве конструкций телевизоров напряжения питания кинескопа получают в выходных каскадах строчной развертки.

Рассмотрим схемное построение генераторов строчной развертки (ГСР). В телевизоре ГСР относится к наиболее энергоемким блокам вследствие высокой частоты осуществления строчной развертки, причем если предварительные каскады, задающий генератор, цепи формирования управляющих импульсов маломощны, то выходной каскад определяет основное энергопотребление телевизора. Принцип ключевого формирования тока строчных катушек реализуется с помощью двухстороннего симметричного ключа. Роль ключа выполняет параллельное соединение коммутирующего транзистора и демпферного диода. Различают две схемы построения выходного каскада строчной развертки - с параллельным и последовательным питанием (рис. 7.11).

На рис. 7.11, а, показана схема выходного каскада ГСР с последовательным способом питания. Строчные катушки ОС включены последовательно в цепь питания коммутирующего транзистора, при этом по отклоняющим катушкам проходит ток, постоянная составляющая которого вызывает децентровку растра и дополнительные потери мощности на нагрев катушек. Нарушение центровки устраняется шунтированием строчных катушек дросселем. Индуктивность дросселя должна быть больше индуктивности строчных катушек. В телевизорах более распространена схема параллельного питания выходного каскада (рис. 7.11, б). При этом строчные катушки подключены к коммутатору через разделительный конденсатор Сраэ, который осуществляет необходимую коррекцию формы отклоняющего тока. При поступлении отпирающего импульса на транзистор происходит формирование отклоняющего тока прямого хода. Обратному ходу соответствует запертое состояние транзистора. При этом в контуре, образованном индуктивностью строчных катушек, емкостями конденсаторов Со и Сраэ, возникает колебательный процесс, но в дальнейшем его развитие «срывается» в момент отпирания демпферного диода. Обратный ход луча в этом случае определяется выбором конденсатора Со. Для обеспечения необходимых напряжений питания кинескопа, а также согласования выходного сопротивления ключа строчной развертки и сопротивления катушек ОС функции дросселя (рис. 7.14, б) выполняют специальные трансформаторы выходные строчной (ТВС) развертки. Примером может быть транзисторная схема строчной развертки (рис. 7.12).



Импульсы с задающего генератора строчной развертки поступают на базу транзистора VT1 предоконечного каскада. Этот каскад через трансформатор управляет работой выходного каскада строчной развертки на транзисторе VT2. В качестве демпферного диода действуют последовательно соединенные диоды VD1 и VD2. Строчные катушки через разделительные конденсаторы С4, С5 последовательно включены с регулятором линейности строк (РЛС). Конденсатор С6 устанавливает длительность обратного хода. На вторичных обмотках трансформатора строчной развертки формируются импульсы обратного хода, которые обеспечивают питание цепей кинескопа и управляющих импульсов для схем АРУ и устройства АПЧФ строчной развертки.

Особенностью каскада строчной развертки является специальная конструкция высоковольтной обмотки строчного трансформатора для питания второго анода кинескопа. Он состоит из пяти секций, соединенных последовательно через диоды, конструктивно совмещенные с обмоткой. Таким образом, высокое напряжение получается путем сложения выпрямленного напряжения с пяти секций. Другие конструкции строчных трансформаторов имеют высоковольтную вторичную обмотку, обеспечивающую при выпрямлении необходимую величину напряжения. Для уменьшения габаритов вторичной обмотки ТВС применяется умножитель напряжения.

Задающий генератор строчной развертки является источником управляющего напряжения для выходного каскада строчной развертки. Он должен обладать высокой стабильностью частоты и крутизной регулировочной характеристики для обеспечения необходимой полосы удержания и захвата системы синхронизации. В задающих каскадах ГСР применяют блокинг-генераторы, мультивибраторы и синусоидальные генераторы. В настоящее время для задающих генераторов используются специально разработанные микросхемы К174АФ1 и 174ХА11, содержащие амплитудный селектор синхроимпульсов, задающий генератор и схему регулирования АПЧиФ. В микросхемах имеется и вторая петля регулирования, компенсирующая задержку переключения активного элемента выходного каскада ГСР.

Качественная работа телевизионной развертки невозможна без синхронного и синфазного формирования отклоняющих токов, что обеспечивается синхроимпульсами кадров и строк, получаемых от блока синхронизации. Блок синхронизации состоит из селектора1 синхроимпульсов, отделяющего синхроимпульсы от полного телевизионного сигнала, и схемы разделения выделенных импульсов на строчные и полукадровые. Строчные синхроимпульсы обеспечивают синхронизацию задающего генератора строчной развертки, кадровые управляют работой задающего генератора кадровой развертки. Отметим, что в строчной развертке используется инерционная синхронизация, а в кадровой - импульсная.

Задача амплитудного селектора состоит в отделении синхросигналов от сигнала изображения и подавлении помех.

Синхроселектор (рис. 7.13) работает в режиме ограничения. Ограничение сверху синхроимпульсов достигается за счет насыщения коллекторного тока транзистора, ограничение снизу обусловлено отсечкой коллекторного тока.

Режим отсечки определяется соответствующим выбором параметров входной цепи Cl, R3. Фиксация уровня в базовой цепи селектора осуществляется базово-эмиттер-ным переходом транзистора, а уровень отсечки поддерживается немного выше уровня черного соответствующим выбором постоянной времени цепи базы. Цепь R2, С2 служит для защиты от импульсных помех схемы селекции синхроимпульсов. Недостатком приведенной схемы синхроселектора является зависимость режима отсечки от параметров транзистора. Лучшими параметрами обладает синхроселектор на полевом транзисторе, но из-за значительной чувствительности полевых транзисторов к статическому электричеству он не обеспечивает требуемой надежности работы телевизионного приемника.



Разделение синхроимпульсов производится по их длительности. Строчные синхроимпульсы выделяются дифференцирующей цепью СЗ, Р6, кадровые - интегрирующей цепью R5, С4 (часто двухзвенной). Синхроимпульсы подаются на соответствующие задающие генераторы разверток. Разный вид синхронизации обусловлен существенным разбросом рабочей частоты разверток. Инерционная синхронизация основана на автоматической подстройке частоты и фазы задающего генератора строчной развертки синхроимпульсами строк (рис. 7.14). Схема АПЧиФ имеет фазовый дискриминатор, фильтр нижней частоты, управляемый задающий генератор, причем обратная связь для контура АПЧиФ берется с выходного каскада строчной развертки и замыкается на схему дискриминатора.

Импульсы строчной синхронизации поступают на парафазный усилитель (транзистор VT1). Разнополярные импульсы поступают на симметричный фазовый дискриминатор (диоды VD3, VD4), на среднюю точку которого подаются импульсы с обмотки ТВС через конденсатор СЗ (обратная связь).

Импульсы обратного хода на цепочке СЗ, R5, R4 преобразуются в пилообразное напряжение, прикладываемое к точке соединения диодов VD3, VD4. Под воздействием пилообразного напряжения и синхроимпульсов конденсаторы С1 и С2 заряжаются через резисторы R2, R3 и открытые диоды VD3, VD4 до пикового значения суммарного напряжения. Совпадение во времени середины обратного хода и синхроимпульсов приводит к равенству амплитуд напряжений на конденсаторах С1, С2. Диоды оказываются запертыми и конденсаторы разряжаются через резисторы R6, R7, сопротивление которых равно по величине. Напряжение в точке их соединения равно 0. Если фаза развертки не совпадает с синхроимпульсами, то появляется напряжение, которое усиливается транзистором VT2. Она управляет частотой генератора развертки. Резистором R5 устанавливается начальное смещение диодов, а резистором R9 - рабочая точка транзистора VT2.

Фильтр нижних частот R7, С4, R12, С5 ограничивает полосу пропускания системы АПЧиФ. Усилитель постоянного тока на транзисторе VT2 увеличивает крутизну регулирования АПЧиФ и управляет задающим генератором строчной развертки VT3. В некоторых схемах телевизоров применяют несимметричный фазовый дискриминатор, принцип работы которого аналогичен симметричному. Полоса пропускания АПЧиФ определяет работу схемы в режиме синхронизации и вхождения в синхронизм. Так, широкая полоса обеспечивает быстрое вхождение в синхронизм при переключении с канала на канал, узкая полоса - лучшую помехоустойчивость.

Интегральная микросхема К174ХА11 имеет помехоустойчивый амплитудный селектор и изменяемую (узкую и широкую) полосу пропускания фильтра фазового дискриминатора, которая может коммутироваться внешним образом. Второе значение полосы пропускания облегчает одновременную работу телевизора и видеомагнитофона. Интегральные микросхемы применяются в строчной развертке черно-белого телевизора «Фотон 234» (К.174ХА11).

Рассматривая генератор кадровой развертки, отметим, что на рабочей частоте отклоняющие кадровые катушки ОС эквивалентны активному сопротивлению и формирование в них отклоняющего тока будет определяться приложенным пилообразным напряжением. Обратный ход луча по времени значительно меньше прямого хода, при этом кадровые катушки нельзя считать эквивалентными чисто активному сопротивлению (сказывается индуктивность кадровых катушек). Поэтому для формирования отклонения луча по кадрам на отклоняющие катушки необходимо подать пилообразно-импульсный ток.

Рассмотрим работу блока кадровой развертки (рис. 7.15) с однотактным выходным каскадом. Задающий генератор выполнен по схеме блокинг-генератора на транзисторе VT1. Пилообразное напряжение формируется на конденсаторе СЗ, который заряжается от источника питания через резисторы R8, R9 и разряжается через переход эмиттер - коллектор транзистора VT1, резистор R6 и диод VD2. Эмиттериый повторитель на VT2 уменьшает влияние усилительного каскада (транзистор VT3) на задающий генератор. Усилительный каскад на транзисторе VT3 управляет выходным однотактным каскадом на транзисторе VT4, работающем в режиме А. Резистор R13 регулирует величину пилообразного напряжения, a R10 - его линейность. Режим выходного каскада устанавливается резистором R18. Трансформатор Т2 участвует в формировании гасящих импульсов обратного хода. Схема кадровой развертки, использующая двухтактное усиление, применена в телевизоре «Фотон 234» (рис. 7.16).

Задающий генератор собран на транзисторах VT8, VTII, включенных по схеме транзисторного аналога тиристора. Времязадйющая цепь состоит из R79, С52. Импульсы кадровой синхронизации управляют работой задающего генератора через цепочку С51, R78. Полученные прямоугольные импульсы формируют пилообразное напряжение. Конденсатор С57 заряжается через цепь R91, R92, С58 и разряжается прн открытом диоде VD10 через открытый переход коллектор - эмиттер транзистора VT11. Пилообразное напряжение, регулируемое резистором R92, поступает на вход микросхемы усилителя мощности, нагруженного на кадровые катушки отклоняющей системы. На транзисторе VT12 и диоде VD11 собран каскад формирования импульсов обратного хода. Обратный ход получается в колебательном контуре из С68 и кадровых катушек. Особенность кадровой развертки состоит в применении в качестве оконечного усилителя микросхемы К174УН7 (усилителя низкой частоты). Однако промышленность выпускает и специализированные микросхемы генераторов кадровой развертки К174ГЛ1 и К174ГЛ2.



Синхронизация кадровой развертки телевизора осуществляется импульсным способом. Суть его состоит в том, что частота задающего генератора выбирается несколько ниже частоты кадровых синхроимпульсов, которые принудительно запускает задающий генератор. На качество синхронизации кадровой развертки влияет фронт выделенного селектором и интегрирующей цепью синхроимпульса. Для увеличения крутизны фронта применяют дополнительный усилитель кадровых синхроимпульсов. Можно выделить три группы неисправностей: ГСР, ГКР и блока синхронизации. Так, неисправность блока строчной развертки проявляется в первую очередь в нарушении параметров (линейность, размер) горизонтальной развертки. Часто нормальное свечение растра нарушено или он вообще отсутствует, так как в подавляющем большинстве телевизоров питание второго анода кинескопа осуществляется от выходного каскада ГСР.

К неисправностям кадровой развертки следует отнести отсутствие свечения экрана (в ламповых черно-белых телевизорах УЛТ-35 - УЛТ-61), недостаточную величину растра по вертикали, нелинейность изображения.

Неустойчивая картинка, искривление вертикальных линий, подергивание изображения по вертикали и горизонтали может указывать на неисправность, имеющуюся в блоке синхронизации.

Поиск дефектов в блоках разверток, если отсутствует свечение, следует начинать с проверки режимов кинескопа. Наличие напряжений на электродах кинескопа, соответствующих норме, однозначно свидетельствует о его неисправности. В случае твердой уверенности в исправности кинескопа проверяют работу генератора строчной развертки и наличие напряжения питания второго анода.

Простейшая диагностика исправности выходного каскада строчной развертки сводится к следующему, отвертка подносится к колпачку анода лампы выходного каскада; наличие искры между отверткой и колпачком длиной 3-5 мм свидетельствует о неисправности выходного каскада строчной развертки, но не выпрямителя.

Выпрямители высокого напряжения лучше всего проверять заменой на заведомо исправный. Диагностика лампового выходного каскада строчной развертки производится обычно с помощью вольтметра. Особое внимание уделяют измерению напряжения на экранной и управляющей сетках, напряжения вольтодобавки. Отсутствие отрицательного смещения на управляющей сетке выходной лампы свидетельствует о дефекте задающего генератора.



О работе ГСР можно судить по наличию «свиста» и изменению его тона при вращении ручки регулировки частоты развертки. На неисправность строчного трансформатора и ОС показывает уменьшение напряжения вольто-добавки и горизонтального размера изображения. Недостаточное напряжение на втором аноде кинескопа характеризуется снижением яркости свечения экрана, чрезмерным увеличением общего размера изображения, нарушением фокусировки. Если отклоняющая система отключена, но напряжение вольтодобавки возрастает, это свидетельствует о ее дефекте. Следует помнить, что отключение ОС без снятия напряжения со второго анода кинескопа может привести к прожогу люминофора кинескопа. Короткозамкнутые витки в ОС вызывают трапецеидальные искажения растра. Заметим, что нелинейность растра, сигнализирующая о неправильной работе демпферных цепей, локализуется в левой части экрана, нелинейность растра справа имеет место при неисправности выходного каскада или задающего генератора.

Поиск неисправности строчной развертки, выполненной на транзисторах, более сложная задача, так как блок строчной развертки является основным энергопотребляющим узлом телевизора и его неисправность может нагрузить общий блок питания н ухудшить работу остальных блоков телевизора.



Выходной транзистор строчной развертки работает в довольно напряженном режиме при значительных импульсных напряжениях и токах. Надежное функционирование транзистора обеспечивается лишь при соответствующих запасах в зонах рабочих режимов транзистора. Однако в результате неисправностей в телевизоре и ошибок в технологии сборки возникают напряжения и токи, превышающие предельные рабочие параметры. При этом транзистор может выйти из строя вследствие электрического или теплового пробоя. Тепловой пробой обусловлен некачественным креплением транзистора к теплоотводам, электрические - нарушениями в работе системы АПЧиФ, срывом или уходом частоты задающего генератора, скачками напряжения питающей сети, искровым пробоем в высоковольтных цепях. Особенно опасны для выходного транзистора переходные процессы, связанные с пробоем в высоковольтных цепях питания кинескопа, перегружающие выходной транзистор. Поэтому метод проверки работы выходных каскадов строчной развертки «на искру» следует полностью исключить.

При определении неисправности транзисторного блока строчной развертки наиболее целесообразен последовательный контроль (с помощью осциллографа) каскадов блока на соответствие параметров генерируемых и усиливаемых напряжений. При исправном задающем генераторе и промежуточных каскадах для диагностики выходного каскада можно применить способ последовательных исключений. Последовательно отключая цепи, которые питаются напряжениями от выходного каскада развертки (цепи питания кинескопа, отклоняющая система, цепи коррекции), находят неисправную цепь. Пробой выходного транзистора, замыкание на корпус определяются с помощью омметра. В целом можно сказать, что основное проявление неисправности блока строчной развертки заключается в отсутствии свечения растра на экране телевизора или, что значительно реже, появлении вертикальной полосы. Примерный алгоритм поиска неисправности в блоке строчной развертки представлен на рис. 7.17, а.






На неисправность блока кадровой развертки показывает появление горизонтальной линии на экране, уменьшение размера изображения по вертикали, нелинейность вертикальной развертки. Дефекты в генераторе кадровой развертки ламповых телевизоров определяют, измеряя рабочие режимы ламп и сравнивая полученные параметры с требуемыми. Для транзисторных генераторов кадровой развертки используется также способ измерения режимов, но предпочтительнее способ покаскадной проверки прохождения импульсов осциллографа. С его помощью легче обнаружить такие дефекты, как уменьшение емкости электролитических конденсаторов, что снижает усилие отдельных каскадов ГКР, например С5, С7 (рис. 7.18). Примерный алгоритм поиска неисправности приведен на рис. 7.17, б.

Диагностику блоков разверток на интегральных микросхемах можно проводить, измеряя напряжения на выводах микросхемы и сопоставляя их с картой напряжений или напряжением в исправном блоке. Более удобно определять исправности с помощью осциллографа. Определение исправности микросхемы рекомендуется начинать с проверки необходимого питающего напряжения, а затем контроля посредством осциллографа выходных параметров.

О дефекте блока синхронизации свидетельствует срыв изображения по строкам и по кадрам. Наиболее вероятная причина этого - неисправность селектора синхроимпульсов. Заметим, что изображение можно остановить, хотя бы кратковременно, оперативными регуляторами частоты строк и кадров. Нарушение работы блока синхронизации происходит и из-за неисправности схемы АРУ, неточной настройки на принимаемый канал или при очень сильном входном сигнале. Поэтому дефект схемы синхронизации следует искать, убедившись в исправности схемы АРУ, блока видеоканала и СКМ. Алгоритм диагностики схемы синхронизации приведен на рис. 7.18.

В черно-белых кинескопах используются электронные прожекторы тетродного (четырехэлектродный) типа, состоящие из катода, модулятора, ускоряющего электрода (первый анод), фокусирующего электрода и анода (второй анод). Электроды образуют электростатические линзы, формирующие электронный луч, диаметр которого на экране составляет 0,4-0,5 мм. Жесткая фокусировка увеличивает видимость строчной структуры изображения, в противном случае ухудшается различимость мелких деталей изображения.

Долговечность черно-белого кинескопа достаточно велика, нормированное значение составляет 3500 ч, фактически срок службы может достигать 10 000 ч. Основной параметр, по которому происходит ухудшение работоспособности кинескопа,- уменьшение эмиссионной способности катода.



В зависимости от типа телевизора видеосигнал может подаваться на катод или модулятор. Схема подачи видеосигнала на катод требует меньших энергетических затрат. По цепи модулятора осуществляется регулирование яркости изображения и запирание кинескопа на время обратного хода по кадрам и строкам гасящими импульсами.

Ускоряющий электрод питается постоянным напряжением 500-600 В, фокусирующий - напряжением, изменяющимся в некоторых пределах для получения оптимальной фокусировки. Второй анод кинескопа требует высокого напряжения (до 20 кВ). В ламповых унифицированных телевизорах первый анод получает питание при выпрямлении импульсов обратного хода кадровой развертки.

Набор КИА для регулировки и настройки блоков разверток обычно содержит многопредельный авометр, осциллограф и киловольтметр. При отсутствии киловольтметра можно пользовать микроамперметр, рассчитанный на ток полного отклонения до 200 мкА с добавочным сопротивлением. Для измерения в этом случае напряжения 30 кВ необходимо добавочное сопротивление в 150 МОм (типа КЭВ или состоящее из нескольких сопротивлений МЛТ, помещенных для изоляции в стеклянную трубку). Измерительную головку подсоединяют непосредственно к земляной шине телевизора. Подключение киловольтметра необходимо производить при выключенном телевизоре во избежание возникновения искрового разряда.

Оценка качества работы блоков разверток производится по тест-таблицам УИЭТ, 0249 или по испытательным сигналам вертикальных или горизонтальных полос, «шахматного» или «сеточного» поля. Наиболее полно можно проверить работу разверток по испытательной таблице 0249. Контролю подлежит качество фокусировки, яркость, размер и линейность изображения, симметричность через-строчного разложения.

Регулировка отремонтированного ГСР заключается в установке номинальной частоты. Далее по испытательной таблице проверяются размер и линейность горизонтальной развертки. Следует помнить, что в телевизорах регулировка размера по горизонтали влияет на напряжение на втором аноде. В транзисторных телевизорах размер по горизонтали можно увеличить, усиливая питание напряжения выходного каскада. Регулировка напряжения на втором аноде заключается в настройке дополнительной катушки, подсоединенной к строчному трансформатору, и контроле по киловольтметру. В некоторых моделях производится только контроль высокого напряжения, требуемая величина которого поддерживается в соответствии со схемой стабилизации. Эта схема выполнена с применением нелинейного элемента (варистор УЛТ-47-59) или стабилизации напряжения питания ГСР («Фотон 234»).

Регулировка блока кадровой развертки проводится в такой же последовательности (задающий генератор, промежуточные каскады, оконечный каскад). Искажения растра по вертикали устраняются соответствующими подстроечными элементами.

Оценка линейности разверток осуществляется по форме квадратов, на которые разбито изображение испытательной таблицы. Значение нелинейности в процентах вычисляется по формуле


где tmax, tmin - наибольший и наименьший размеры стороны квадратов.

Нелинейность по горизонтали определяется горизонтальными сторонами квадратов, вертикальная - вертикальными. Правильность формы электронного луча проверяется по малым концентрическим окружностям на испытательной таблице. Элептичность луча видна по разнице толщины линии окружности. Правильность чересстрочного разложения устанавливается по диагоналям квадратов. Нарушение чересстрочности приводит к зубчатости диагоналей. При этом клинья для измерения горизонтальной четкости веерообразно изгибаются вверх и вниз.

Центровка изображения регулируется постоянными магнитами, расположенными на отклоняющей системе. Подушкообразные искажения корректируются боковыми магнитами.

Колба кинескопа емкостью около 500 пФ хорошо изолирована относительно общего провода телевизора. Поэтому заряд на колбе сохраняется довольно долго, и при касании обесточенного кинескопа можно получить поражение электрическим током. Для снятия заряда применяют специальный разрядник (на диэлектрической ручке), один гибкий конец которого заземляется, вторым касаются вывода второго анода.