Зависимость момента от тока асинхронного двигателя. Электромагнитный момент и механические характеристики асинхронного двигателя

РАБОТА ПО ЭЛЕКТРОТЕХНИКЕ

"Рабочие характеристики асинхронного двигателя"

Введение

Асинхронная электрическая машина – это электрическая машина переменного тока, у которой частота вращения ротора не равна частоте вращения магнитного поля статора и зависит от нагрузки. Используется в основном как двигатель и как генератор. Статор имеет пазы, в которые укладывается одно- или многофазная (чаще трёхфазная) обмотка, подключаемая к сети переменного тока. Эта обмотка предназначена для создания подвижного магнитного поля, вращающегося кругового- у трёхфазных и пульсирующего или вращающегося эллиптического-у однофазных машин. Ротор – вращающаяся часть электрической машины, предназначен также для создания магнитного поля, которое, взаимодействуя с полем статора, ведёт к созданию электромагнитного вращающего момента, определяющего направление преобразования энергии. У генераторов этот момент носит тормозной характер, противодействуя вращающему моменту первичного двигателя, приводящего в движение ротор. У двигателей, наоборот, этот момент является движущим, преодолевающим сопротивление приводимого во вращение ротором механизма.

Асинхронный генератор-это асинхронная электрическая машина, работающая в генераторном режиме. Вспомогательный источник электрического тока небольшой мощности и тормозное устройство (в электроприводе).

Асинхронный электродвигатель – это асинхронная электрическая машина, работающая в двигательном режиме. Наиболее распространен трехфазный асинхронный электродвигатель (изобретен в 1889 М.О. Доливо-Добровольским). Асинхронные электродвигатели отличаются относительной простотой конструкции и надежностью в эксплуатации, однако имеют ограниченный диапазон частоты вращения и низкий коэффициент мощности при малых нагрузках. Мощность от долей Вт до десятков МВт.

1. Асинхронный двигатель

1.1 Частота вращения магнитного поля и ротора

Пусть n 1 – частота вращения магнитного поля. Многофазная система переменного тока создаёт вращающееся магнитное поле, частота вращения которого в минуту n1=60f1/p, где f1 – частота тока, p – число пар полюсов, образуемых каждой фазой статорной обмотки.

n 2 – частота вращения ротора. Если ротор вращается с частотой не равной частоте вращения магнитного поля (n2≠n1), то такая частота называется асинхронной. В асинхронном двигателе рабочий процесс может протекать только при асинхронной частоте.

При работе частота вращения ротора всегда меньше частоты вращения поля.

( n 2< n 1)

1.2 Принцип действия асинхронного двигателя

В асинхронных двигателях вращающееся магнитное поле создаётся трёхфазной системой при включении её в сеть переменного тока. Вращающееся магнитное поле статора пересекает проводники обмотки ротора и индуцирует в них э.д.с. Если обмотка ротора замкнута на какое-либо сопротивление или накоротко, то в ней под действием индуцируемой э.д.с. проходит ток. В результате взаимодействия тока в обмотке ротора с вращающимся магнитным полем обмотки статора создаётся вращающий момент, под действием которого ротор начинает вращаться по направлению вращения магнитного поля. Для изменения направления вращения ротора необходимо поменять местами по отношению к зажимам сети любые два из трёх проводов, соединяющих обмотку статора с сетью.

1.3 Устройство асинхронного двигателя

Сердечник статора набирается из стальных пластин, толщиной 0,35 или 0,5 мм. Пластины штампуют с пазами и крепят в станине двигателя. Станину устанавливают на фундаменте. В продольные пазы статора укладывают проводники его обмотки, которые соединяют между собой так, что образуется трёхфазная система. Для подключения обмоток статора к трёхфазной сети они могут быть соединены звездой или треугольником. Это даёт возможность включить двигатель в сеть с разным напряжением. Для более низких напряжений (220/127 В) обмотка статора соединяется треугольником, для более высоких (380/220 В) – звездой. Сердечник ротора также набирают из стальных пластин толщиной 0,5 мм. Пластины штампуют с пазами и собирают в пакеты, которые крепят на валу машины. Из пакетов образуется цилиндр с продольными пазами, в которых укладывают проводники обмотки ротора. В зависимости от типа обмотки ротора асинхронные машины могут быть с фазным и короткозамкнутым ротором. В короткозамкнутую обмотку нельзя включить сопротивление. В Фазной обмотке проводники соединены между собой, образуя трёхфазную систему. Обмотки трёх фаз соединены звездой. Обмотку ротора можно замкнуть на сопротивление или накоротко. Двигатели с короткозамкнутым ротором проще и дешевле, однако двигатели с фазным ротором обладают лучшими пусковыми и регулировочными свойствами (они используется при больших мощностях). Мощность асинхронных двигателей колеблется от нескольких десятков Ватт до 15000 кВт при напряжении обмотки статора до 6 кВ. Недостаток асинхронных двигателей – низкий коэффициент мощности.

1.4 Работа асинхронного двигателя под нагрузкой

n 1 – частота вращения магнитного поля статора. n 2 – частота вращения ротора.

n 1 > n 2

Магнитное поле статора вращается в том же направлении, что и ротор и скользит относительно ротора с частотой n s = n 1 – n 2

Отставание ротора от вращающегося магнитного поля статорахарактеризуется скольжениемS = n s / n 1, => S = ( n 1 – n 2) / n 1

Если ротор неподвижен, тоn 2 =0, S = ( n 1 – n 2) / n 1, => S = n 1 / n 1 =1

Если ротор вращается синхронно с магнитным полем, то скольжение S= 0.

При холостом ходе, то есть при отсутствии нагрузки на валу двигателя скольжение ничтожно мало и его можно принять равным 0. Нагрузкой на валу ротора может служить, например резец токарного станка. Он создаёт тормозной момент. При равенстве вращающего и тормозного момента двигатель будет работать устойчиво. Если нагрузка на валу увеличилась, то тормозной момент станет больше вращающего и частота вращения ротора n 2 уменьшится. Согласно формулеS = ( n 1 – n 2) / n 1 скольжение увеличится. Так как магнитное поле статора скользит относительно ротора с частотой n s = n 1 – n 2, то оно будет пересекать проводники ротора чаще, в них увеличится ток и двигательный вращающий момент, который вскоре станет равным тормозному. При уменьшении нагрузки, тормозной момент становится меньше вращающего, увеличивается n 2 и уменьшаетсяS . Уменьшается Э.Д.С и ток ротора и вращающий момент вновь равен тормозному. Магнитный поток в воздушном зазоре машины при любом изменении нагрузки остаётся примерно постоянным.

2. Рабочие характеристики асинхронного двигателя

Рабочие характеристики асинхронного двигателя есть зависимость

S – скольжения

n2 – частоты вращения ротора

М – развиваемого момента

I1-потребляемого тока

Р1-расходуемой мощности

СОSφ-коэффициента мощности

От полезной мощности Р2 на валу машины.

Эти характеристики снимаются при естественных условиях. Частота тока f1 и напряжение U1 остаются постоянными. Изменяется только нагрузка на валу двигателя.

При увеличении нагрузки на валу двигателя S увеличивается. При холостом ходе двигателя n2≈n1, и S≈0. При номинальной нагрузке скольжение обычно составляет от 3 до 5%.

При увеличении нагрузки на валу двигателя частота вращения n2 уменьшается. Однако, изменение частоты вращения при увеличении нагрузки от 0 до номинальной очень незначительны и не превышают 5%. Поэтому, скоростная характеристика асинхронного двигателя является жёсткой. Кривая имеет очень малый наклон к горизонтальной оси.

Вращающий момент М , развиваемый двигателем, уравновешен тормозным моментом на валу Мт и моментом М 0 , идущим на преодоление механических потерь, то есть М= Мт + М 0 2 2 + М 0 , где Р 2 – полезная мощность двигателя, Ω 2 -угловая скорость ротора. При холостом ходе М= М 0. С увеличением нагрузки вращающий момент также увеличивается, причём за счёт некоторого уменьшения частоты вращения ротора увеличение вращающего момента происходит быстрее, чем полезной мощности на валу.

Ток I1, потребляемый двигателем из сети неравномерно изменяется с увеличением нагрузки на валу двигателя. При холостом ходе СОSφ-коэффициента мощности – мал. И ток имеет большую реактивную составляющую. При малых нагрузках на валу двигателя активная составляющая тока статора меньше реактивной составляющей, поэтому активная составляющая тока незначительно влияет на ток I1. При больших нагрузках активная составляющая тока статора становится больше реактивной и изменение нагрузки вызывает значительное изменение тока I1.

Графическая зависимость потребляемой двигателем мощности Р1 изображается почти прямой линией, незначительно отклоняющейся вверх при больших нагрузках, что объясняется увеличением потерь в обмотках статора и ротора с возрастанием нагрузки.

Зависимость СОSφ-коэффициента мощности – от нагрузки на валу двигателя следующая. При холостом ходе СОSφ мал, порядка 0,2. Так как активная составляющая тока статора, обусловленная потерями мощности в машине, мала по сравнению с реактивной составляющей этого тока, создающей магнитный поток. При увеличении нагрузки на валу СОSφ возрастает, достигая наибольшего значения 0,8–0,9, в результате увеличения активной составляющей тока статора. При очень больших нагрузках происходит некоторое уменьшение СОSφ, так как в следствие значительного увеличения скольжения и частоты тока в роторе возрастает реактивное сопротивление обмотки ротора.

Кривая КПДη имеет такой же вид как в любой машине или трансформаторе. При холостом ходе КПД=0. С увеличением нагрузки на валу двигателя КПД резко увеличивается, а затем уменьшается. Наибольшего значения КПД достигает при такой нагрузке, когда потери мощности в стали и механические потери, не зависящие от нагрузки, равны потери мощности в обмотках статора и ротора, зависящим от нагрузки.

38) Механическая характеристика асинхронного двигателя.

Механическая характеристика . Зависимость частоты вращения ротора от нагрузки (вращающегося момента на валу) называется механической характеристикой асинхронного двигателя (рис. 262, а). При номинальной нагрузке частота вращения для различных двигателей обычно составляет 98-92,5 % частоты вращения n 1 (скольжение s ном = 2 – 7,5 %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора. Как показывает кривая

Рис. 262. Механические характеристики асинхронного двигателя: а - естественная; б - при включении пускового реостата

на рис. 262, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент M max двигатель развивает при некоторое скольжении s kp , составляющем 10-20%. Отношение M max /M ном определяет перегрузочную способность двигателя, а отношение М п /М ном - его пусковые свойства.

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки М вн и моментом М, развиваемым двигателем. Этому условию соответствует верхняя часть характеристики до достижения M max (до точки В). Если нагрузочный момент М вн превысит момент M max , то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5-7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R 1п (кривая 2), R 2п (кривая 3) и R 3п (кривая 4), называют реостатными механическими характеристиками. При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R 2 и возрастает s кp . При этом уменьшается пусковой ток. Пусковой момент М п также зависит от R 2 . Можно так подобрать сопротивление реостата, чтобы пусковой момент М п был равен наибольшему М max .

В двигателе с повышенным пусковым моментом естественная механическая характеристика приближается по своей форме к характеристике двигателя с включенным пусковым реостатом. Вращающий момент двигателя с двойной беличьей клеткой равен сумме двух моментов, создаваемых рабочей и пусковой клетками. Поэтому характеристику 1 (рис. 263) можно получить путем суммирования характеристик 2 и 3, создаваемых этими клетками. Пусковой момент М п такого двигателя значительно больше, чем момент М’ п обычного короткозамкнутого двигателя. Механическая характеристика двигателя с глубокими пазами такая же, как и у двигателя с двойной беличьей клеткой.

НА ВСЯКИЙ СЛУЧАЙ РАБОЧУЮ ХАРАКТЕРИСТИКУ!!!

Рабочие характеристики. Рабочими характеристиками асинхронного двигателя называются зависимости частоты вращения n (или скольжения s), момента на валу М 2 , тока статора I 1 коэффициента полезного действия? и cos? 1 , от полезной мощности Р 2 = Р mx при номинальных значениях напряжения U 1 и частоты f 1 (рис. 264). Они строятся только для зоны практической устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10-20%. Частота вращения n с ростом отдаваемой мощности Р 2 изменяется мало, так же как и в механической характеристике; вращающий момент на валу М 2 пропорционален мощности Р 2 , он меньше электромагнитного момента М на значение тормозящего момента М тр, создаваемого силами трения.

Ток статора I 1 , возрастает с увеличением отдаваемой мощности, но при Р 2 = 0 имеется некоторый ток холостого хода I 0 . К. п. д. изменяется примерно так же, как и в трансформаторе, сохраняя достаточно большое значение в сравнительно широком диапазоне нагрузки.

Наибольшее значение к. п. д. для асинхронных двигателей средней и большой мощности составляет 0,75-0,95 (машины большой мощности имеют соответственно больший к. п. д.). Коэффициент мощности cos? 1 асинхронных двигателей средней и большой мощности при полной нагрузке равен 0,7-0,9. Следовательно, они загружают электрические станции и сети значительными реактивными токами (от 70 до 40% номинального тока), что является существенным недостатком этих двигателей.

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рис. 264. Рабочие характеристики асинхронного двигателя

При нагрузках 25-50 % номинальной, которые часто встречаются при эксплуатации различных механизмов, коэффициент мощности уменьшается до неудовлетворительных с энергетической точки зрения значений (0,5-0,75).

При снятии нагрузки с двигателя коэффициент мощности уменьшается до значений 0,25-0,3, поэтому нельзя допускать работу асинхронных двигателей при холостом ходе и значительных недогрузках.

Работа при пониженном напряжении и обрыве одной из фаз. Понижение напряжения сети не оказывает существенного влияния на частоту вращения ротора асинхронного двигателя. Однако в этом случае сильно уменьшается наибольший вращающий момент, который может развить асинхронный двигатель (при понижении напряжения на 30% он уменьшается примерно в 2 раза). Поэтому при значительном падении напряжения двигатель может остановиться, а при низком напряжении - не включиться в работу.

На э. п. с. переменного тока при уменьшении напряжения в контактной сети соответственно уменьшается и напряжение в трехфазной сети, от которой питаются асинхронные двигатели, приводящие во вращение вспомогательные машины (вентиляторы, компрессоры, насосы). Для того чтобы обеспечить нормальную работу асинхронных двигателей при пониженном напряжении (они должны нормально работать при уменьшении напряжения до 0,75U ном), мощность всех двигателей вспомогательных машин на э. п. с. берется примерно в 1,5-1,6 раза большей, чем это необходимо для привода их при номинальном напряжении. Такой запас по мощности необходим также из-за некоторой несимметрии фазных напряжений, так как на э. п. с. асинхронные двигатели питаются не от трехфазного генератора, а от расщепителя фаз. При несимметрии напряжений фазные токи двигателя будут неодинаковы и сдвиг между ними по фазе не будет равен 120°. В результате по одной из фаз будет протекать больший ток, вызывающий увеличенный нагрев обмоток данной фазы. Это заставляет ограничивать нагрузку двигателя по сравнению с работой его при симметричном напряжении. Кроме того, при несимметрии напряжений возникает не круговое, а эллиптическое вращающееся магнитное поле и несколько изменяется форма механической характеристики двигателя. При этом уменьшаются его наибольший и пусковой моменты. Несимметрию напряжений характеризуют коэффициентом несимметрии, который равен среднему относительному (в процентах) отклонению напряжений в отдельных фазах от среднего (симметричного) напряжения. Систему трехфазных напряжений принято считать практически симметричной, если этот коэффициент меньше 5 %.

При обрыве одной из фаз двигатель продолжает работать, но по неповрежденным фазам будут протекать повышенные токи, вызывающие увеличенный нагрев обмоток; такой режим не должен допускаться. Пуск двигателя с оборванной фазой невозможен, так как при этом не создается вращающееся магнитное поле, вследствие чего ротор двигателя не будет вращаться.

Использование асинхронных двигателей для привода вспомогательных машин э. п. с. обеспечивает значительные преимущества по сравнению с двигателями постоянного тока. При уменьшении напряжения в контактной сети частота вращения асинхронных двигателей, а следовательно, и подача компрессоров, вентиляторов, насосов практически не изменяются. В двигателях же постоянного тока частота вращения пропорциональна питающему напряжению, поэтому подача этих машин существенно уменьшается.

Рабочие характеристики асинхронного двигателя представляют собой графически выраженные зависимости частоты вращения n2, КПД η, полезного момента (момента на валу) М2, коэффициента мощности cos φ, и тока статора I1 от полезной мощности Р2 при U1 = const f1 = const.

Скоростная характеристика n2 = f(P2). Частота вращения ротора асинхронного двигателя n2 = n1(1 - s).

Скольжение s = Pэ2/Pэм, т. е. скольжение асинхронного двигателя, а следовательно, и его частота вращения определяются отношением электрических потерь в роторе к электромагнитной мощности. Пренебрегая электрическими потерями в роторе в режиме холостого хода, можно принять Рэ2 = 0, а поэтому s ≈ 0 и n20 ≈ n1.

По мере увеличения нагрузки на валу отношение s = Pэ2/Pэм растет, достигая значений 0,01 - 0,08 при номинальной нагрузке. В соответствии с этим зависимость n2 = f(P2) представляет собой кривую, слабо наклоненную к оси абсцисс. Однако при увеличении активного сопротивления ротора двигателя r2" угол наклона этой кривой увеличивается. В этом случае изменения частоты асинхронного двигателя n2 при колебаниях нагрузки Р2 возрастают. Объясняется это тем, что с увеличением r2" возрастают электрические потери в роторе.

Рис. 1. Рабочие характеристики асинхронного двигателя двигателя

Зависимость М2 =f(P2). Зависимость полезного момента на валу асинхронного двигателя М2 от полезной мощности Р2 определяется выражением M2 = Р2/ ω2 = 60 P2/ (2πn2) = 9,55Р2/ n2,

где Р2 - полезная мощность, Вт; ω2 = 2πf 2/ 60 - угловая частота вращения ротора.

Из этого выражения следует, что если n2 = const, то график М2 =f2(Р2) представляет собой прямую линию. Но в асинхронном двигателе с увеличением нагрузки Р2 частота вращения ротора уменьшается, а поэтому полезный момент на валу М2 с увеличением нагрузки возрастает не сколько быстрее нагрузки, а следовательно, график М2 =f (P2) имеет криволинейный вид.

Рис. 2. Векторная диаграмма асинхронного двигателя при небольшой нагрузке

Зависимость cos φ1 = f (P2). В связи с тем что ток статора асинхронного двигателя I1 имеет реактивную (индуктивную) составляющую, необходимую для создания магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы. Наименьшее значение коэффициента мощности соответствует режиму холостого хода. Объясняется это тем, что ток холостого хода электродвигателя I0 при любой нагрузке остается практически неизменным. Поэтому при малых нагрузках двигателя ток статора невелик и в значительной части является реактивным (I1 ≈ I0). В результате сдвиг по фазе тока статора относительно напряжения получается значительным (φ1 ≈ φ0), лишь немногим меньше 90° (рис. 2).

Коэффициент мощности асинхронных двигателей в режиме холостого хода обычно не превышает 0,2. При увеличении нагрузки на валу двигателя растет активная составляющая тока I1 и коэффициент мощности возрастает, достигая наибольшего значения (0,80 - 0,90) при нагрузке, близкой к номинальной. Дальнейшее увеличение нагрузки на валу двигателя сопровождается уменьшением cos φ1 что объясняется возрастанием индуктивного сопротивления ротора (x2s) за счет увеличения скольжения, а следовательно, и частоты тока в роторе.

В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или по крайней мере значительную часть времени с нагрузкой, близкой к номинальной. Это можно обеспечить лишь при правильном выборе мощности двигателя. Если же двигатель работает значительную часть времени недогруженным, то для повышения cos φ1, целесообразно подводимое к двигателю напряжение U1 уменьшить. Например, в двигателях, работающих при соединении обмотки статора треугольником, это можно сделать пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения в раз. При этом магнитный поток статора, а следовательно, и намагничивающий ток уменьшаются примерно в раз. Кроме того, активная составляющая тока статора несколько увеличивается. Все это способствует повышению коэффициента мощности двигателя.

Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем .

Электромагнитный момент М пропорционален электромагнитной мощности:

(3.40)

Угловая синхронная скорость вращения.

Подставив в (3.39) значение электромагнитной мощности (3.33), получим:

, (3.41)

т. е. электромагнитный момент асинхронного двигателя пропорционален мощности электрических потерь в обмотке ротора .

Если значение тока ротора по выражению (3.28) подставить в (3.41), то получим формулу электромагнитного момента асинхронной машины (Нм):

(3.42)

Параметры схемы замещения асинхронной машины r 1 , r¢ 2 , x 1 и x¢ 2 , входящие в выражение (3.42), являются постоянными, так как их значения при изменениях нагрузки машины остаются практически неизменными. Также постоянными можно считать напряжение на обмотке фазы статора U 1 и частоту f 1 . В выражении момента М единственная переменная величина — скольжение s , которое для различных режимов работы асинхронной машины может принимать разные значения в диапазоне от + ¥ до -¥ (см. рис. 3.5).

Рассмотрим зависимость момента от скольжения М = f(s) при U 1 = const, f 1 = const и постоянных параметрах схемы замещения. Эту зависимость принято называть механической характеристикой асинхронной машины. Анализ выражения (3.42), представляющего собой аналитическое выражение механической характеристики М = f(s) , показывает, что при значениях скольжения s = 0 и s = ¥ электромагнитный момент М = 0. Из этого следует, что механическая характеристика М = f(s) имеет максимум.

Для определения величины критического скольжения s кр , соответствующего максимальному моменту, необходимо взять первую производную от (3.42) и приравнять ее нулю: . В результате

(3.43)

Подставив значение критического скольжения (по 3.43) в выражение электромагнитного момента (3.42), после ряда преобразований получим выражение максимального момента (Н · м):

(3.44)

В (3.43) и (3.44) знак плюс соответствует двигательному, а знак минус — генераторному режиму работы асинхронной машины.

Для асинхронных машин общего назначения активное сопротивление обмотки статора r 1 намного меньше суммы индуктивных сопротивлений: r 1 < < (x 1 + x¢ 2). Поэтому, пренебрегая величиной r 1 , получим упрощенные выражения критического скольжения

, (3.45)

и максимального момента (Н · м)

(3.46)


Рис. 3.10. Зависимость режимов работы асинхронной машины от скольжения

Анализ выражения (3.44) показывает, что максимальный момент асинхронной машины в генераторном режиме больше, чем в двигательном (M max Г > М тахД ). На рис. 3.4 показана механическая характеристика асинхронной машины M = f(s) при U 1 = const. На этой характеристике указаны зоны, соответствующие различным режимам работы: двигательный режим (0 < s < 1), когда электромагнитный момент М является вращающим; генераторный режим (- ¥ < s < 0) и тормозной режим противовключением (1 < s < + ¥), когда электромагнитный момент М является тормозящим.

Из (3.42) следует, что электромагнитный момент асинхронного двигателя пропорционален квадрату напряжения сети: М ≡ U 1 2 . Это в значительной степени отражается на эксплуатационных свойствах двигателя: даже небольшое снижение напряжения сети вызывает заметное уменьшение вращающего момента асинхронного двигателя. Например, при уменьшении напряжения сети на 10% относительно номинального (U 1 = 0.9U ном ) электромагнитный момент двигателя уменьшается на 19%: М¢ = 0.9 2 М = 0.81М , где М —момент при номинальном напряжении сети, а М ¢ — момент при пониженном напряжении.

Для анализа работы асинхронного двигателя удобнее воспользоваться механической характеристикой M = f(s), представленной на рис. 3.5.



Рис. 3.11. Зависимость электромагнитного момента асинхронного двигателя от скольжения

При включении двигателя в сеть, магнитное поле статора, не обладая инерцией, сразу же начинает вращение с синхронной частотой n 1 , в то же время ротор двигателя под влиянием сил инерции в начальный момент пуска остается неподвижным (n 2 = 0) и скольжение s = 1.

Подставив в (3.42) скольжение s = 1, получим выражение пускового момента асинхронного двигателя (Н · м):

(3.47)

Под действием этого момента начинается вращение ротора двигателя, при этом скольжение уменьшается, а вращающий момент возрастает в соответствии с характеристикой M = f(s) . При критическом скольжении s кр момент достигает максимального значения М ma х .

С дальнейшим нарастанием частоты вращения (уменьшением скольжения) момент М начинает убывать, пока не достигнет установившегося значения, равного сумме противодействующих моментов, приложенных к ротору двигателя: момента ХХ M 0 и полезного нагрузочного момента (момента на валу двигателя) М 2 , то есть

М = М 0 + М 2 = М ст . (3.48)

Следует иметь в виду, что при скольжениях, близких к единице (пусковой режим двигателя), параметры схемы замещения асинхронного двигателя заметно изменяют свои значения. Объясняется это, в основном, двумя факторами: усилением магнитного насыщения зубцовых слоев статора и ротора, что ведет к уменьшению индуктивных сопротивлений рассеяния x 1 и х 2 , и эффектом вытеснения тока в стержнях ротора, что ведет к увеличению активного сопротивления обмотки ротора r 2 ¢ . Поэтому параметры схемы замещения асинхронного двигателя, используемые при расчете электромагнитного момента по (3.42), (3.44) и (3.46), не могут быть использованы для расчета пускового момента по (3.47).

Статический момент М ст равен сумме противодействующих моментов при равномерном вращении ротора (n 2 = const). Допустим, что противодействующий момент на валу двигателя М 2 соответствует номинальной нагрузке двигателя. В этом случае установившийся режим работы двигателя определится точкой на механической характеристике с координатами М = M ном и s = s ном, где М ном и s ном — номинальные значения электромагнитного момента и скольжения.

Из анализа механической характеристики также следует, что устойчивая работа асинхронного двигателя возможна при скольжениях, меньших критического (s < s кр ), т. е. на участке ОА механической характеристики. Дело в том, что именно на этом участке изменение нагрузки на валу двигателя сопровождается соответствующим изменением электромагнитного момента.

Так, если двигатель работал в номинальном режиме (М ном; s ном ), то имело место равенство моментов: М ном = М 0 + М 2 . Если произошло увеличение нагрузочного момента М 2 до значения М¢ 2 , то равенство моментов нарушится, т. е. М ном < М 0 + М 2 , и частота вращения ротора начнет убывать (скольжение будет увеличиваться). Это приведет к росту электромагнитного момента до значения М¢ = М 0 + М¢ 2 , (точка В), после чего режим работы двигателя вновь станет установившимся.

Если же при работе двигателя в номинальном режиме произойдет уменьшение нагрузочного момента до значения М¢¢ 2 , то равенство моментов вновь нарушится, но теперь вращающий момент окажется больше суммы противодействующих: М ном > М 0 + М¢¢ 2 . Частота вращения ротора начнет возрастать (скольжение будет уменьшаться), и это приведет к уменьшению электромагнитного момента М до значения М¢¢ = М 0 + М¢¢ 2 (точка С); устойчивый режим работы будет вновь восстановлен, но уже при других значениях М и s .

Работа асинхронного двигателя становится неустойчивой при скольжениях s³s кр . Так, если электромагнитный момент двигателя М = М тах , а скольжение s = s кр , то даже незначительное увеличение нагрузочного момента М 2 , вызвав увеличение скольжения s , приведет к уменьшению электромагнитного момента М . За этим последует дальнейшее увеличение скольжения и т. д., пока скольжение не достигнет значения s = 1, т. е. пока ротор двигателя не остановится.

Таким образом, при достижении электромагнитным моментом максимального значения наступает предел устойчивой работы асинхронного двигателя. Следовательно, для устойчивой работы двигателя необходимо, чтобы сумма нагрузочных моментов, действующих на ротор, была меньше максимального момента: М ст = (М 0 + М 2) < М тах . Но чтобы работа асинхронного двигателя была надежной и чтобы случайные кратковременные перегрузки не вызывали остановок двигателя, необходимо, чтобы он обладал перегрузочной способностью .

Перегрузочная способность двигателя λ определяется отношением максимального момента М тах к номинальному М ном . Для асинхронных двигателей общего назначения перегрузочная способность составляет = 1.7 ÷ 2.5.

Следует также обратить внимание на то, что работа двигателя при скольжении s < s кр , т. е. на рабочем участке механической характеристики, является наиболее экономичной, так как она соответствует малым значениям скольжения, а следовательно, и меньшим значениям электрических потерь в обмотке ротора Р э2 = sP эм .

Применение формулы (3.35) для расчета механических характеристик асинхронных двигателей не всегда возможно, так как параметры схемы замещения двигателей обычно не приводятся в каталогах и справочниках, поэтому для практических расчетов обычно пользуются упрощенной формулой момента. В основу этой формулы положено допущение, что активное сопротивление обмотки статора асинхронного двигателя r 1 = 0, при этом:

(3.49)

Критическое скольжение определяют по формуле:

. (3.50)

Расчет механической характеристики намного упрощается, если его вести в относительных единицах . В этом случае уравнение механической характеристики имеет вид:

. (3.51)

Применение упрощенной формулы (3.51) наиболее целесообразно при расчете рабочего участка механической характеристики при скольжениях s < s кр , так как в этом случае величина ошибки не превышает значений, допустимых для технических расчетов. При скольжениях s > s кр ошибка может достигать 15-17%.

Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора

Из (3.42), (3.44) и (3.47) видно, что электромагнитный момент асинхронного двигателя, а также его максимальное и пусковое значения пропорциональны квадрату напряжения, подводимого к обмотке статора: М ≡ U 1 2 . В то же время анализ выражения (3.43) показывает, что значение критического скольжения не зависит от напряжения U 1 . Это дает нам возможность построить механические характеристики М = f(s) для разных значений напряжения U 1 (рис. 3.12), из которых следует, что колебания напряжения сети U 1 относительно его номинального значения U 1ном сопровождаются не только изменениями максимального и пускового моментов, но и изменениями частоты вращения ротора.

Рис. 3.12. Влияние напряжения на вид механической характеристики асинхронного двигателя

С уменьшением напряжения сети частота вращения ротора снижается (скольжение увеличивается). Напряжение U 1 влияет назначение максимального момента М тах, а также на перегрузочную способность двигателя . Так, если напряжение U 1 понизилось на 30%, т. е. U 1 = 0.7U ном, то максимальный момент асинхронного двигателя уменьшится более, чем вдвое:

М¢ max = 0.7 2 М max = 0.49М max .

На сколько же уменьшится перегрузочная способность двигателя · Если, например, при номинальном напряжении сети перегрузочная способность , то при понижении напряжения на 30% перегрузочная способности двигателя , т. е| двигатель не в состоянии нести даже номинальную нагрузку.

Как следует из (3.44), значение максимального момента двигателя не зависит от активного сопротивления ротора r¢ 2 . Что же касается критического скольжения s кр, то, как это видно из (3.43), оно пропорционально сопротивлению r¢ 2 . Таким образом, если в асинхронном двигателе постепенно увеличивать активное сопротивление цепи ротора, то значение максимального момента будет оставаться неизменным, а критическое скольжение будет увеличиваться (рис. 3.13). При этом пусковой момент двигателя М П возрастает с увеличением сопротивления r¢ 2 до некоторого значения. На рисунке это соответствует сопротивлению r¢ 2 III , при котором пусковой момент равен максимальному. При дальнейшем увеличении сопротивления r¢ 2 пусковой момент уменьшается.



Рис. 3.13. Влияние активного сопротивления обмотки ротора на механическую характеристику асинхронного двигателя.

Анализ графиков М = f(s), приведенных на рис. 3.13, также показывает, что изменения сопротивления ротора r¢ 2 сопровождаются изменениями частоты вращения: с увеличением r¢ 2 при неизменном нагрузочном моменте М ст скольжение увеличивается, т. е. частота вращения уменьшается (точки 1, 2, 3 и 4).

Влияние активного сопротивления обмотки ротора на форму механических характеристик асинхронных двигателей используется при проектировании двигателей. Например, асинхронные двигатели общего назначения должны иметь «жесткую» скоростную характеристику (см. рис. 3.11), т. е. работать с небольшим номинальным скольжением. Это достигается применением в двигателе обмотки ротора с малым активным сопротивлением r¢ 2. При этом двигатель имеет более высокий КПД за счет снижения электрических потерь в обмотке ротора (Р э2 = m 1 I¢ 2 2 r¢ 2 ). Выбранное значение r¢ 2 должно обеспечить двигателю требуемое значение пускового момента.

При необходимости получить двигатель с повышенным значением пускового момента увеличивают активное сопротивление обмотки ротора. Но при этом получают двигатель с большим значением номинального скольжения, и следовательно, с меньшим КПД.

Рассмотренные зависимости М = f(U 1) и M = f(r 2 ") имеют также большое практическое значение при рассмотрении вопросов пуска и регулирования частоты вращения асинхронных двигателей.

Рабочие характеристики асинхронного двигателя

Рабочие характеристики асинхронного двигателя (рис. 3.14) представляют собой графически выраженные зависимости частоты вращения n 2 , КПД h , полезного момента (момента на валу) М 2 , коэффициента мощности cosφ 1 , и тока статора I 1 , от полезной мощности Р 2 при U 1 = const и f 1 = const.

Рис. 3.14. Рабочие характеристики асинхронного двигателя

Скоростная характеристика п 2 = f(Р 2).

Частота вращения ротора асинхронного двигателя

n 2 = n 1 (1-s).

Скольжение по (3.33)

т. е. скольжение двигателя, а следовательно, и его частота вращения определяются отношением электрических потерь в роторе к электромагнитной мощности Р эм.

Пренебрегая электрическими потерями в роторе в режиме холостого хода, можно принять Р э2 = 0, а поэтому s 0 ≈ 0 и п 20 ≈ n 1 ,. По мере увеличения нагрузки на валу двигателя отношение (8.1) растет, достигая значений 0.01 ÷ 0.08 при номинальной нагрузке. В соответствии с этим зависимость n 2 = f(P 2) представляет собой кривую, слабо наклоненную к оси абсцисс.

Однако при увеличении активного сопротивления ротора r¢ 2 угол наклона этой кривой увеличивается. В этом случае изменения частоты вращения п 2 при колебаниях нагрузки Р 2 возрастают. Объясняется это тем, что с увеличением r¢ 2 возрастают электрические потери в роторе [см. (3.31)].

Механическая рабочая характеристика М 2 = f(Р 2)

Зависимость полезного момента на валу двигателя М 2 от полезной мощности Р 2 определяется выражением

(3.53)

где Р 2 — полезная мощность, Bт;

— угловая частота вращения ротора.

Из этого выражения следует, что если n 2 = const, то график М 2 = f(Р 2) представляет собой прямую линию. Но в асинхронном двигателе с увеличением нагрузки Р 2 частота вращения ротора уменьшается, апоэтому полезный момент на валу М 2 сувеличением нагрузки возрастает несколько быстрее нагрузки, а следовательно, график М 2 = f(P 2) имеет криволинейный вид.

Зависимость cosφ 1 = f(P 2)

В связи с тем, что ток статора I 1 имеет реактивную (индуктивную) составляющую, необходимую для создания магнитного поля в статоре, коэффициент мощности асинхронных двигателей меньше единицы.

Наименьшее значение коэффициента мощности соответствует режиму ХХ. Объясняется это тем, что ток ХХ I 0 при любой нагрузке остается практически неизменным. Поэтому при малых нагрузках двигателя ток статора невелик и в значительной части является реактивным (I 1 ≈ I 0 ). В результате сдвиг по фазе тока статора относительно напряжения получается значительным (φ ≈ φ 0 ), лишь немногим меньшим 90° (рис. 3.15).

Коэффициент мощности асинхронных двигателей в режиме ХХ обычно не превышает 0,2. При увеличении нагрузки на валу двигателя растет активная составляющая тока I 1 и коэффициент мощности возрастает, достигая наибольшего значения (0.80 ÷ 0.90) при нагрузке, близкой к номинальной.

Рис.3.15. Векторная диаграмма асинхронного двигателя при небольшой нагрузке

Дальнейшее увеличение нагрузки сопровождается уменьшением cosφ 1 , что объясняется возрастанием индуктивного сопротивления ротора (х 2 s )за счет увеличения скольжения, а следовательно, и частоты тока в роторе. В целях повышения коэффициента мощности асинхронных двигателей чрезвычайно важно, чтобы двигатель работал всегда или, по крайней мере, значительную часть времени с нагрузкой, близкой к номинальной.

Это можно обеспечить лишь при правильном выборе мощности двигателя. Если же двигатель работает значительную часть времени недогруженным, то для повышения cosφ 1 целесообразно подводимое к двигателю напряжение U 1 уменьшить.

Например, в двигателях, работающих при соединении обмотки статора треугольником, это можно сделать, пересоединив обмотки статора в звезду, что вызовет уменьшение фазного напряжения в раз. При этом магнитный поток статора, а следовательно, и намагничивающий ток уменьшаются примерно в раз. Кроме того, активная составляющая тока статора несколько увеличивается. Все это способствует повышению коэффициента мощности двигателя.

На рис. 3.16 представлены графики зависимости cosφ 1 асинхронного двигателя от нагрузки при соединении обмоток статора звездой (кривая 1 ) и треугольником (кривая 2).

Рис. 3.16. Зависимость cosφ 1 от нагрузки при соединении обмотки статора звездой (1) и треугольником (2).

Вопросы для самопроверки

1. Поясните принцип действия асинхронной машины.

2. Охарактеризуйте режимы работы асинхронной машины.

3. Что называется скольжением асинхронной машины?

4. Запишите уравнения напряжений асинхронного двигателя?

5. Запишите уравнения МДС и токов асинхронного двигателя.

6. Начертите схемы замещения асинхронного двигателя.

7. Начертите векторную диаграмму асинхронного двигателя.

8. Какие потери существуют в асинхронном двигателе? Нарисуйте энергетическую диаграмму асинхронного двигателя.

9. Запишите формулу электромагнитного момента асинхронного двигателя.

10. Нарисуйте график механической характеристики асинхронного двигателя.

11. Как изменяются механические характеристики асинхронного двигателя в зависимости от изменения напряжения сети и активного сопротивления ротора?

12. Нарисуйте рабочие характеристики асинхронного двигателя.

РАБОТА ПО ЭЛЕКТРОТЕХНИКЕ

" Рабочие характеристики асинхронного двигателя "

Вв едение

Асинхронная электрическая машина - это электрическая машина переменного тока, у которой частота вращения ротора не равна частоте вращения магнитного поля статора и зависит от нагрузки. Используется в основном как двигатель и как генератор. Статор имеет пазы, в которые укладывается одно- или многофазная (чаще трёхфазная) обмотка, подключаемая к сети переменного тока. Эта обмотка предназначена для создания подвижного магнитного поля, вращающегося кругового- у трёхфазных и пульсирующего или вращающегося эллиптического-у однофазных машин. Ротор - вращающаяся часть электрической машины, предназначен также для создания магнитного поля, которое, взаимодействуя с полем статора, ведёт к созданию электромагнитного вращающего момента, определяющего направление преобразования энергии. У генераторов этот момент носит тормозной характер, противодействуя вращающему моменту первичного двигателя, приводящего в движение ротор. У двигателей, наоборот, этот момент является движущим, преодолевающим сопротивление приводимого во вращение ротором механизма.

Асинхронный генератор-это асинхронная электрическая машина, работающая в генераторном режиме. Вспомогательный источник электрического тока небольшой мощности и тормозное устройство (в электроприводе).

Асинхронный электродвигатель - это асинхронная электрическая машина, работающая в двигательном режиме. Наиболее распространен трехфазный асинхронный электродвигатель (изобретен в 1889 М.О. Доливо-Добровольским). Асинхронные электродвигатели отличаются относительной простотой конструкции и надежностью в эксплуатации, однако имеют ограниченный диапазон частоты вращения и низкий коэффициент мощности при малых нагрузках. Мощность от долей Вт до десятков МВт.

1 . Ас инхронный двигатель

1.1 Частота вращения магнитного поля и ротора

Пусть n 1 - частота вращения магнитного поля. Многофазная система переменного тока создаёт вращающееся магнитное поле, частота вращения которого в минуту n1=60f1/p, где f1 - частота тока, p - число пар полюсов, образуемых каждой фазой статорной обмотки.

n 2 - частота вращения ротора. Если ротор вращается с частотой не равной частоте вращения магнитного поля (n2?n1), то такая частота называется асинхронной. В асинхронном двигателе рабочий процесс может протекать только при асинхронной частоте.

При работе частота вращения ротора всегда меньше частоты вращения поля.

(n 2< n 1)

1.2 Принцип действия асинхронного двигателя

В асинхронных двигателях вращающееся магнитное поле создаётся трёхфазной системой при включении её в сеть переменного тока. Вращающееся магнитное поле статора пересекает проводники обмотки ротора и индуцирует в них э.д.с. Если обмотка ротора замкнута на какое-либо сопротивление или накоротко, то в ней под действием индуцируемой э.д.с. проходит ток. В результате взаимодействия тока в обмотке ротора с вращающимся магнитным полем обмотки статора создаётся вращающий момент, под действием которого ротор начинает вращаться по направлению вращения магнитного поля. Для изменения направления вращения ротора необходимо поменять местами по отношению к зажимам сети любые два из трёх проводов, соединяющих обмотку статора с сетью.

1 .3 Ус тройство асинхронного двигателя

Сердечник статора набирается из стальных пластин, толщиной 0,35 или 0,5 мм. Пластины штампуют с пазами и крепят в станине двигателя. Станину устанавливают на фундаменте. В продольные пазы статора укладывают проводники его обмотки, которые соединяют между собой так, что образуется трёхфазная система. Для подключения обмоток статора к трёхфазной сети они могут быть соединены звездой или треугольником. Это даёт возможность включить двигатель в сеть с разным напряжением. Для более низких напряжений (220/127 В) обмотка статора соединяется треугольником, для более высоких (380/220 В) - звездой. Сердечник ротора также набирают из стальных пластин толщиной 0,5 мм. Пластины штампуют с пазами и собирают в пакеты, которые крепят на валу машины. Из пакетов образуется цилиндр с продольными пазами, в которых укладывают проводники обмотки ротора. В зависимости от типа обмотки ротора асинхронные машины могут быть с фазным и короткозамкнутым ротором. В короткозамкнутую обмотку нельзя включить сопротивление. В Фазной обмотке проводники соединены между собой, образуя трёхфазную систему. Обмотки трёх фаз соединены звездой. Обмотку ротора можно замкнуть на сопротивление или накоротко. Двигатели с короткозамкнутым ротором проще и дешевле, однако двигатели с фазным ротором обладают лучшими пусковыми и регулировочными свойствами (они используется при больших мощностях). Мощность асинхронных двигателей колеблется от нескольких десятков Ватт до 15000 кВт при напряжении обмотки статора до 6 кВ. Недостаток асинхронных двигателей - низкий коэффициент мощности.

1 .4 Ра бота асинх ронного двигателя под нагрузкой

n 1 - частота вращения магнитного поля статора. n 2 - частота вращения ротора.

n 1 > n 2

Магнитное поле статора вращается в том же направлении, что и ротор и скользит относительно ротора с частотой n s = n 1 - n 2

Отставание ротора от вращающегося магнитного поля статорахарактеризуется скольжениемS = n s / n 1 , => S = (n 1 - n 2 ) / n 1

Если ротор неподвижен, тоn 2 =0, S = (n 1 - n 2 ) / n 1 , => S = n 1 / n 1 =1

Если ротор вращается синхронно с магнитным полем, то скольжение S= 0.

При холостом ходе, то есть при отсутствии нагрузки на валу двигателя скольжение ничтожно мало и его можно принять равным 0. Нагрузкой на валу ротора может служить, например резец токарного станка. Он создаёт тормозной момент. При равенстве вращающего и тормозного момента двигатель будет работать устойчиво. Если нагрузка на валу увеличилась, то тормозной момент станет больше вращающего и частота вращения ротора n 2 уменьшится. Согласно формулеS = (n 1 - n 2 ) / n 1 скольжение увеличится. Так как магнитное поле статора скользит относительно ротора с частотой n s = n 1 - n 2 , то оно будет пересекать проводники ротора чаще, в них увеличится ток и двигательный вращающий момент, который вскоре станет равным тормозному. При уменьшении нагрузки, тормозной момент становится меньше вращающего, увеличивается n 2 и уменьшаетсяS . Уменьшается Э.Д.С и ток ротора и вращающий момент вновь равен тормозному. Магнитный поток в воздушном зазоре машины при любом изменении нагрузки остаётся примерно постоянным.

2 . Ра бочие характ еристики асинхронного двигателя

Рабочие характеристики асинхронного двигателя есть зависимость

S - скольжения

n2 - частоты вращения ротора

М - развиваемого момента

I1-потребляемого тока

Р1-расходуемой мощности

СОS?-коэффициента мощности

От полезной мощности Р2 на валу машины.

Эти характеристики снимаются при естественных условиях. Частота тока f1 и напряжение U1 остаются постоянными. Изменяется только нагрузка на валу двигателя.

При увеличении нагрузки на валу двигателя S увеличивается. При холостом ходе двигателя n2?n1, и S?0. При номинальной нагрузке скольжение обычно составляет от 3 до 5%.

При увеличении нагрузки на валу двигателя частота вращения n2 уменьшается. Однако, изменение частоты вращения при увеличении нагрузки от 0 до номинальной очень незначительны и не превышают 5%. Поэтому, скоростная характеристика асинхронного двигателя является жёсткой. Кривая имеет очень малый наклон к горизонтальной оси.

Вращающий момент М , развиваемый двигателем, уравновешен тормозным моментом на валу Мт и моментом М 0 , идущим на преодоление механических потерь, то есть М= Мт + М 0 = Р 2 / ? 2 + М 0 , где Р 2 - полезная мощность двигателя, ? 2 -угловая скорость ротора. При холостом ходе М= М 0. С увеличением нагрузки вращающий момент также увеличивается, причём за счёт некоторого уменьшения частоты вращения ротора увеличение вращающего момента происходит быстрее, чем полезной мощности на валу.

Ток I1, потребляемый двигателем из сети неравномерно изменяется с увеличением нагрузки на валу двигателя. При холостом ходе СОS?-коэффициента мощности - мал. И ток имеет большую реактивную составляющую. При малых нагрузках на валу двигателя активная составляющая тока статора меньше реактивной составляющей, поэтому активная составляющая тока незначительно влияет на ток I1. При больших нагрузках активная составляющая тока статора становится больше реактивной и изменение нагрузки вызывает значительное изменение тока I1.

Графическая зависимость потребляемой двигателем мощности Р1 изображается почти прямой линией, незначительно отклоняющейся вверх при больших нагрузках, что объясняется увеличением потерь в обмотках статора и ротора с возрастанием нагрузки.

Зависимость СОS?-коэффициента мощности - от нагрузки на валу двигателя следующая. При холостом ходе СОS? мал, порядка 0,2. Так как активная составляющая тока статора, обусловленная потерями мощности в машине, мала по сравнению с реактивной составляющей этого тока, создающей магнитный поток. При увеличении нагрузки на валу СОS? возрастает, достигая наибольшего значения 0,8-0,9, в результате увеличения активной составляющей тока статора. При очень больших нагрузках происходит некоторое уменьшение СОS?, так как в следствие значительного увеличения скольжения и частоты тока в роторе возрастает реактивное сопротивление обмотки ротора.

Кривая КПД? имеет такой же вид как в любой машине или трансформаторе. При холостом ходе КПД=0. С увеличением нагрузки на валу двигателя КПД резко увеличивается, а затем уменьшается. Наибольшего значения КПД достигает при такой нагрузке, когда потери мощности в стали и механические потери, не зависящие от нагрузки, равны потери мощности в обмотках статора и ротора, зависящим от нагрузки.