Что такое номинальное напряжение электродвигателя. Что такое номинальная мощность

О мощности:

С 2010 года на двигателях, произведенных в Европе и США, не указывается мощность, а только объем двигателя и крутящий момент в Н/м (Ньютон на метр) или Ft/Lbs (фут на фунт, американский аналог российских кг-сил). Для перевода в европейскую систему исчисления необходимо умножить Ft-lbs на 1.356 – получим Н-м.

Так как эти данные не слишком очевидны, то мы попытаемся в данной ситуации определить какой все-таки мощности тот или иной двигатель.

Мощность измеряется по формуле P (Вт) = Момент (Н-м) *Частоту вращения (Об/мин) / 9.5492

Нужно иметь ввиду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность будет при 3600 об/мин.

Поэтому для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать на какие рабочие обороты он настроен, что не все производители указывают. Серьезные производители двигателей указывают для этого график, аналогичный представленному внизу, или указывают мощность двигателя достигается при каких оборотах. Если у вас есть регулятор оборотов двигателя – значит максимальная мощность будет на максимальных оборотах.

Этим различием и пользовались производители двигателей – указывалась мощность теоретически возможная при завышенных оборотах (например, 5.0 л.с. которую можно достичь при 4500 об/мин), при этом сам двигатель был настроен при постоянной работе на обороты 3600 – и при них мощность равнялась бы 3.5 л.с. Мощность численно от оборотов зависит гораздо больше, чем от момента. Надо понимать также, что при завышении оборотов мощность растет, а крутящий момент падает.

Практически это означает, что для косилки, чем больше мощность, тем на большие обороты можно раскрутить нож или на те же обороты, но более длинный/тяжелый нож. Но при этом, если задрать обороты и соответственно уменьшить крутящий момент, то нож сможет преодолевать все меньшее сопротивление. То есть наступает ситуация, что при последующем увеличении оборотов, будет уменьшаться крутящий момент и двигатель будет раньше глохнуть при увеличении сопротивления (нагрузки) и значит хуже будет косить густую траву.

Поэтому с 2010 года мощность, если и указывается, то в основном только производителем самой техники, на которую уже установлен тот или иной двигатель, с уже определенным «рабочим» числом оборотов, максимально подходящим к тому виду деятельности техники, на который установлен двигатель. А на двигателях указывается только максимальный крутящий момент, на который и стоит ориентироваться. Ведь чем больше крутящий момент, тем лучше техника будет справляться со своей задачей. Все это касается нормальных (брендовых) производителей техники. Сейчас все больше и больше появляется двигателей из Китая, как и от европейских производителей (MTD, Emak, Stiga, Al-Ko и т.д.), так и собственно китайских брендов Zongshen, Loncin, Rato, Lifan и других. Также существует большое количество «заказных» марок сделанных на основе аутсорсинга, то есть владелец бренда заказывает двигатели под собственным названием на заводах в Китае. А тут уже все зависит от добросовестности заказчика/поставщика этих агрегатов. По вашей просьбе и за ваши деньги в Китае вам напечатают любой паспорт и наклейки с любыми цифрами. Поэтому покупая культиватор/косилку с гордой надписью 7-8 л.с. с китайским мотором вы можете получить по факту двигатель реальной мощности 4-5 л.с. Но так, как в России потребитель в первую очередь выбирает технику по мощности, то наша компания, по возможности, указывает для бензиновой техники с четырехтактными двигателями две мощности: максимальную – завышенная мощность, которую указывали до 2010 года и продолжают указывать некоторые производители/продавцы для увеличения привлекательности своего товара, и номинальную (реальную). Но номинальную мощность, к сожалению, указывают не все производители или указывают завышенную, выдавая ее за номинальную. При этом этот параметр можно замерить только в заводских условиях, поэтому не во всех товарах есть возможность указать данную характеристику.

Также мы рекомендуем в первую очередь обращать внимание на крутящий момент и объем двигателя. Учитывая, что двигатели на садовой технике сконструированы достаточно просто (нет никакого турбо наддува, форсажа и т.д.), то с одного объема невозможно снять больше мощности на 30-50 %.

Большое разнообразие типов и конструкций электрических машин и потребность в объективной оценке и сравнении их данных привели к необходимости стандартизации основных понятий в области характеристик, расчетных параметров и режимов работы машин. Термины и определения этих величин установлены несколькими ГОСТ и являются обязательными для применения в документации всех видов, учебниках, учебных пособиях, технической и справочной литературе. Стандарты содержат более 200 терминов и определений. В настоящем параграфе приводятся основные из них, относящиеся ко всем или ко многим типам вращающихся электрических машин независимо от их назначения и конструктивного исполнения. Асинхронный электродвигатель Асинхронный электродвигатель – электрическая асинхронная машина для преобразования электрической энергии в механическую. Принцип работы асинхронного электродвигателя основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трёхфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля. Синхронный электродвигатель Синхронной называется электрическая машина, скорость вращения n (об/мин) которой связана постоянным отношением с частотой n = 60 * f / p (где р - число пар полюсов машины) сети переменного тока, в которую эта машина включена. Синхронный машины служат генераторами переменного тока; синхронные электродвигателя применяются во всех тех случаях, когда нужен двигатель, работающий при постоянной скорости; для получения регулируемого реактивного тока устанавливают синхронные компенсаторы. Электродвигатель постоянного тока Хотя система своременного электроснабжения основана на применении переменного тока, тем не менее машины постоянного тока находят широкое использование в самых различных отраслях промышленности и в быту.

Номинальными данными электрической машины называют данные, характеризующие ее работу в режиме, для которого она предназначена заводом-изготовителем. К номинальным данным относятся мощность, напряжение, ток, частота, КПД, коэффициент мощности, частота вращения и ряд других данных в зависимости от типа и назначения машины.

Номинальные данные характеризуют работу машины, установленной на высоте до 1000 м над уровнем моря, при температуре окружающей среды 40 °С и охлаждающей воды 30 °С, если в стандартах или технических условиях на данный конкретный тип машины не установлена другая температура охлаждающих сред. Если машина работает в условиях, отличающихся от указанных, ее номинальные данные должны быть изменены так, чтобы нагрев машины соответствовал требованиям ГОСТ 183-74.

Режим работы электрической машины - установленный порядок чередования и продолжительности нагрузки, холостого хода, торможения, пуска и реверса машины во время ее работы. Номинальным режимом работы называется режим, для работы в котором электрическая машина предназначена заводом-изготовителем.

Номинальная мощность - мощность, для работы с которой в номинальном режиме машина предназначена заводом-изготовителем. Для различных типов машин номинальной мощностью является:

  • для генераторов переменного тока - полная электрическая мощность на выводах при номинальном коэффициенте мощности, ВА;
  • для генераторов постоянного тока - электрическая мощность на выводах машины, Вт;
  • для двигателей переменного и постоянного тока - механическая мощность на валу, Вт;
  • для синхронных и асинхронных компенсаторов - реактивная мощность на выводах компенсатора, вар.

Номинальное напряжение - напряжение, на которое машина рассчитана заводом-изготовителем для работы в номинальном режиме с номинальной мощностью. Номинальным напряжением трехфазных машин называют линейное напряжение, т. е. напряжение между фазами подключенной к машине сети. Номинальным напряжением ротора асинхронного двигателя с трехфазной обмоткой называют напряжение на выводах разомкнутой обмотки ротора (напряжение на контактных кольцах) при неподвижном роторе и включенной на номинальное напряжение обмотке статора. Номинальным напряжением двухфазной обмотки ротора называют наибольшее из напряжений между контактными кольцами. Номинальным напряжением возбудительной системы машины с независимым возбуждением называют номинальное напряжение того независимого источника, от которого получается возбуждение.

Номинальный ток - ток, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении.

Номинальное напряжение возбуждения - напряжение на выводах (или контактных кольцах) обмотки возбуждения с учетом падения напряжения под щетками при питании ее номинальным током возбуждения, когда активное сопротивление приведено к расчетной рабочей температуре, при работе машины в номинальном режиме с номинальными мощностью, напряжением и частотой вращения.

Номинальный ток возбуждения - ток возбуждения, соответствующий работе машины в номинальном режиме с номинальной мощностью и частотой вращения при номинальном напряжении.

Номинальная частота вращения - частота вращения, соответствующая работе машины при номинальных напряжении, мощности и частоте тока и номинальных условиях применения.

Номинальные условия применения - условия, установленные в стандарте или технических условиях на данный конкретный тип машины, при которых эта машина должна иметь номинальную частоту вращения.

Коэффициент полезного действия - отношение полезной (отдаваемой) мощности к затрачиваемой (подводимой); для генераторов - отношение активной электрической мощности, отдаваемой в сеть, к затрачиваемой механической мощности; для двигателей - отношение полезной механической мощности на валу к активной подводимой электрической мощности. Номинальным КПД называют указанное отношение мощностей при работе машины с номинальными мощностью, напряжением, частотой тока и частотой вращения.

Коэффициент мощности машин переменного тока:

  • для генераторов - отношение отдаваемой активной электрической мощности, Вт, к полной отдаваемой электрической мощности, В-А;
  • для двигателей - отношение активной потребляемой электрической мощности, Вт, к полной потребляемой электрической мощности, В А.

Номинальным коэффициентом мощности электрической машины называют указанное отношение мощностей при работе машины в номинальном режиме, с номинальными мощностью, напряжением, частотой тока и частотой вращения.

Помимо перечисленных определений номинальных данных стандартами установлены основные определения, относящиеся к условиям работы машины и ее характеристикам.

- мощность, которую развивает электрическая машина в данный момент времени. Нагрузка может быть выражена в единицах активной или полной мощности (Вт, или В А) либо в долях номинальной мощности. Она также выражается током, потребляемым или отдаваемым электрической машиной, А, либо в процентах или долях номинального тока.

- нагрузка, равная номинальной мощности машины.

- нагрузка, при которой отклонение тока и напряжения якоря и мощности машины от значений, соответствующих заданному режиму, составляет не более 3%, тока возбуждения и частоты - не более 1 %.

Практически симметричная трехфазная система напряжений - трехфазная система напряжений, в которой напряжение обратной последовательности не превышает 1 % напряжения прямой последовательности при разложении данной трехфазной системы на системы прямой и обратной последовательностей.

Практически симметричная система токов - трехфазная система, для которой ток обратной последовательности не превышает 5% тока прямой последовательности.

Начальный пусковой ток электродвигателя - установившийся ток в обмотке электродвигателя при неподвижном роторе, номинальном подведенном напряжении и номинальной частоте, при соединении обмоток машины, соответствующем номинальным условиям работы двигателя.

Начальный пусковой момент электродвигателя - вращающий момент электродвигателя, развиваемый при неподвижном роторе, установившемся токе, номинальном подведенном напряжении, номинальной частоте и соединении обмоток, соответствующем номинальным условиям работы двигателя.

Максимальный вращающий момент электродвигателя переменного тока - наибольший момент вращения, развиваемый двигателем в установившемся режиме при номинальных напряжении и частоте, при соединении обмоток, соответствующем номинальным условиям работы, и (для синхронных двигателей) при номинальном токе возбуждения.

Минимальный вращающий момент асинхронного двигателя - наименьший вращающий момент, развиваемый асинхронным двигателем с короткозамкнутым ротором в процессе разгона от неподвижного состояния до частоты вращения, соответствующей максимальному моменту при номинальных напряжении и частоте, при соединении обмоток, соответствующем номинальным условиям работы двигателя или пусковому режиму (для однофазных двигателей с пусковой обмоткой).

Критическое скольжение асинхронной машины - скольжение, при котором асинхронная машина развивает максимальный вращающий момент.

Номинальное изменение напряжения электрических генераторов - изменение напряжения на выводах генератора, работающего на автономную сеть с неизменной и равной номинальной частотой вращения при изменении его нагрузки от номинальной до холостого хода. Для генераторов с независимым возбуждением, кроме того, - при сохранении номинального тока возбуждения, а для генераторов с самовозбуждением - при неизменном сопротивлении всей цепи обмотки возбуждения. Номинальное изменение напряжения выражают в процентах или в долях номинального напряжения генератора.

Номинальное изменение частоты вращения электродвигателя - изменение частоты вращения двигателя, работающего при номинальном напряжении на его выводах и номинальной частоте тока, при изменении нагрузки от номинальной до нулевой, а для двигателей, не допускающих нулевой нагрузки,- от номинальной до 1/ 4 номинальной. Номинальное изменение частоты вращения выражают в процентах или в долях номинальной частоты вращения.";

Определение мощности двигателя для производственного механизма выполняется в соответствии с нагрузкой на его валу по условиям нагрева. После того как двигатель выбран по ус­ловиям нагрева по каталогу, его проверяют по перегрузочной способности и условиям пуска.

За время работы теплота, обусловленная потерями мощности в двигателе, нагревает его. Допустимая же температура двигателя определяется классом изоляции его обмоток и не должна превышать определенного значения, установленного заводом-изготовителем. Необходимо выбрать такой двигатель по номинальной мощности, при которой он бы нагревался за время работы до температуры, не превосходящей допустимую. Превышение допустимой температуры приводит к потере изоляцией электрической и механической прочности и к выходу двигателя из строя.

Завышение мощности двигателя связано с дополнительными капитальными затратами, увеличением расхода энергии на единицу продукции, а для асинхронных двигателей, кроме того, - с ухудшением коэффициента мощности.

По характеру работы все производственные механизмы разделяются на четыре основные группы:

1) механизмы, работающие длительно с постоянной нагрузкой;

2) механизмы, работающие длительно с изменяющейся на­грузкой;

3) механизмы, часть времени производственного цикла работающие, другую часть находящиеся в неподвижном состоянии (повторно-кратковременный характер работы);

4) механизмы, работающие всего несколько секунд или минут, а затем длительно (десятки секунд или минут) находящиеся в неподвижном состоянии (кратковременный характер работы).

В соответствии с характером работы производственных механизмов установлены три основных номинальных режима двигателей: продолжительный, повторно-кратковременный и кратковременный.

При продолжительном режиме (рис. 12.2, а ) за время работы двигатель успевает нагреться до установившейся температуры. При повторно-кратковременном режиме (рис. 12.2, б ) за время работы t t 0 , когда он отключен от сети, не успеет охладиться до температуры окружающей среды τ 0,с. Однако по прошествии нескольких циклов температура будет колебаться между наибольшими и наименьшими значениями, которые далее остаются постоянными. Основной характеристикой этого режима является относительная продолжительность включения, %,

где t p , t 0 , T ц - соответственно интервалы работы, паузы и цикла.

При кратковременном режиме (рис. 12.2, в ) за время работы t p двигатель не успевает нагреться до установившейся температуры, а за время паузы t 0 успевает охладиться до температуры окружающей среды τ 0,с.

Каждый двигатель может работать в любом из перечисленных режимов. Однако для получения наилучших экономических показателей электротехническая промышленность изготовляет двигатели, специально предназначенные для: а) продолжительного режима; б) повторно-кратковременного режима; в) кратковременного режима.

Рис. 12.2 Нагрузочные графики и изменение температуры двигателя при длительном (а ), повторно-кратковременном (б ) и кратковременном (в ) режимах работы

Для двигателей продолжительного режима в каталогах задается номинальная мощность без каких-либо оговорок о времени работы. Для двигателей повторно-кратковременного режима в каталогах указываются номинальные значения мощности соответственно для ПВ - 15, 25, 40 и 60%. При этом время цикла не должно превышать 10 мин. В противном случае режим работы считается продолжительным. Для двигателей кратковременного режима в каталогах задаются несколько времен работы и соответствующие им номинальные мощности.

В основе выбора мощности двигателя любого режима работы лежит метод средних потерь. Он основан на сравнении средних потерь мощности ΔР ср двигателя за цикл работы с потерями при номинальной нагрузке ΔР ном.

Средние потери определяются из выражения

С термином «номинальная мощность» мы сталкиваемся практически ежедневно. Выбираем ли или лампу накаливания - везде указано это значение. Единицей измерения являются ватты или киловатты. Казалось бы - что может быть проще в этом вопросе? Ведь еще со школьного курса физики всем известно, что для определения мощности (P) достаточно перемножить значения тока и напряжения. Но что скрывается за словами «номинальная мощность»?

Под термином «номинальный» понимают определенное значение чего-либо, не учитывающее внешних корректирующих факторов. Таким образом, номинальная мощность - указанное производителем значение, которое может быть получено только при предусмотренных расчетных параметрах. Это общее понятие. В каждом же конкретном случае необходимо учитывать свои специфичные особенности. Приведем пример с лампой накаливания. На ее стеклянной колбе отмечено: 230 В, 100 Вт. То есть, 100 Вт может быть достигнуто только при напряжении в 230 В. Номинальная мощность - это те самые 100 Вт. Ее значение уменьшается со снижением напряжения и увеличивается с повышением так как эти параметры находятся в прямой зависимости друг от друга (P=I*U).

Как правило, для большинства электроприборов есть ограничение по верхней границе, обычно 5-10%. Другими словами, допустима работа при 230 В + 23 В = 253 В. Нижний предел может не указываться, как в случае с лампой. Более сложное оборудование ограничено по паспортным параметрам как сверху, так и снизу.

К примеру, как понять термин «номинальная мощность двигателя»? Существует два равноправных определения - одно с точки зрения электричества, а другое исходя из расчетной механической нагрузки на валу. Хотя они непосредственно взаимосвязаны, второе более простое для понимания. Мы приведем оба. На табличке с всегда указано значение мощности. Она численно равна потребляемой из электрической сети при расчетной механической нагрузке, причем температура корпуса должна находиться в допустимых пределах (подразумевается продолжительный режим работы). То есть, можно считать, что паспортное значение равно номинальному. Если же электропривод работает в повторно-кратковременном режиме (ПВ не равно 100%), то такое соответствие не выполняется, так как времени работы недостаточно для перехода в установившийся режим, когда увеличение нагрева компенсируется температурой окружающего воздуха. В этом случае потребуется нагрузочный график: номинальная мощность будет равна произведению паспортного значения P и из подобранного по графику коэффициента. Все вышесказанное верно для электрической составляющей.

Согласно другому определению, номинальная мощность принимается равной механической, развиваемой двигателем при расчетном значении напряжения и температурном режиме, соответствующем паспортному. Таким образом, если напряжение (U) уменьшается, то изменяется и момент силы, хотя скорость вращения вала может остаться прежней. Как было сказано, производителем закладывается в изделие определенный «запас прочности»: колебания U в пределах +-5% позволяет двигателю развивать расчетный момент (при неизменности частоты сети). Для частоты такой запас составляет всего 2,5%.

А вот номинальная мощность трансформатора учитывает только температурный режим. Если посмотреть в паспорт устройства, то там указаны две температуры: номинальная и окружающего воздуха. Если при работе первая не превышает своего расчетного значения, а вторая отличается от паспортных данных незначительно, то в этом режиме трансформатор выдает номинальную мощность. Любое повышение электрической нагрузки вызывает рост тока и температуры, поэтому вполне достаточно контроля последней. Как и в случае с двигателями, допускается небольшое превышение.