Схема электродвигателя постоянного тока с параллельным возбуждением. Двигатели параллельного возбуждения

Министерство науки и образования Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

Национальный исследовательский

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра Электроснабжения и Электротехники

Двигатель постоянного тока параллельного возбуждения

Отчет по лабораторной работе №9

по дисциплине «Общая электротехника и электроника»

Выполнил

Студент СМо-11-1 ________ Дергунов А.С. __________

(подпись) Фамилия И.О. (дата)

Доцент каф. Э и ЭТ ________ Кирюхин Ю.А. __________

(подпись) Фамилия И.О. (дата)

Иркутск 2012

Цель работы 3

Задание 3

Краткие теоретические сведения 3

Оборудование электрической установки 5

Порядок выполнения работы 6

Ответы контрольные вопросы 9

Цель работы

Ознакомиться с устройством и работой двигателя постоянного тока параллельного возбуждения и исследовать его характеристики.

Задание

Ознакомиться с конструкцией и принципом работы двигателя постоянного тока параллельного возбуждения. Ознакомиться со схемой включения двигателя параллельного возбуждения. Ознакомиться с условиями пуска двигателя параллельного возбуждения. Ознакомиться со способами регулирования частоты вращения двигателя. Исследовать двигатель в режиме холостого хода. Построить регулировочную характеристику. Исследовать двигатель при нагрузке. Построить рабочие и механические характеристики.

Краткие теоретические сведения

В двигателе параллельного возбуждения обмотку возбуждения включают параллельно обмотке якоря (см. рис. 1). Величина тока в обмотке возбуждения меньше тока якоряи составляет 2 – 5% от.

Эксплуатационные свойства двигателей оцениваются рабочими, механическими и регулировочными характеристиками.


Рис. 1

На рис. 8 показаны рабочие характеристики двигателя параллельного возбуждения: зависимость частоты вращения , величины тока якоря, вращающего момента

, коэффициента полезного действияи потребляемой из сети мощностиот полезной мощностипри неизменных напряжениии токе возбуждения.

Рис. 2

Механическая характеристика двигателя представляет собой зависимость частоты вращения якоря от момента на валу при неизменных напряжении и сопротивлении цепи возбуждения . Она показывает влияние механической нагрузки на валу двигателя на частоту вращения, что особенно важно знать при выборе и эксплуатации двигателей. Механические характеристики могут быть естественными и искусственными. Характеристика двигателя при номинальных

,

и сопротивлении

называется естественной. Формула для частоты вращения двигателя:


Уравнение механической характеристики:


, (1)

где

– частота вращения при идеальном холостом ходе (

);


–изменение частоты вращения, вызванное действием нагрузки.

Так как у двигателей постоянного тока сопротивление обмотки якоря

мало, то с увеличением нагрузки на валу частота вращенияn изменяется незначительно. Характеристики подобного типа называются жесткими.

Если пренебречь размагничивающим действием реакции якоря и принять

, то естественная механическая характеристика двигателя параллельного возбуждения имеет вид прямой, слабо наклонной к оси абсцисс (рис.3, прямая 1).

Если в цепь якоря двигателя ввести пускорегулировочный реостат

, то зависимость

будет определяться выражением




. (2)

Частота вращения при идеальном холостом ходе остается неизменной, а изменение частоты вращения

увели-чивается, и угол наклона механической характеристики к оси абсцисс возрастает (рис. 3, прямая 2). Полученная таким образом механическая характеристика называетсяискусственной .

Принудительное изменение частоты вращения двигателя при постоянном моменте нагрузки на валу называется регулированием. Рис. 3

Регулирование частоты вращения в двигателях параллельного возбуждения возможно двумя способами: изменением магнитного потока и изменением сопротивления в цепи якоря.

Р

егулирование частоты вращения изменением сопротивления в цепи якоря осуществляется при помощи пуско-регулировочного реостата

. При увеличении сопротивления

частота вращения уменьшается по формуле (2). Этот способ неэкономичен, так как сопровождается значительными потерями на нагрев реостата.

Регулирование частоты вращения изменением магнитного потока осуществ-ляется посредством реостата , включен-ного в обмотку возбуждения (см.рис.1). Рис. 10 Рис. 4

При увеличении уменьшается ток в обмотке возбуждения, уменьшается магнитный поток

, что вызывает увеличение частоты вращения.

При малых значениях тока возбуждения, а тем более при обрыве цепи возбуждения (

), то есть при незначительном магнитном потоке

, частота вращения резко увеличивается, что ведет к «разносу» двигателя и к его механическому разрушению. Поэтому очень важно следить за тем, чтобы все электрические соединения в цепи возбуждения были надежны.

Зависимость частоты вращения от тока возбуждения называется регулировочной характеристикой двигателя (см. рис. 4).

Регулирование частоты вращения изменением магнитного потока

очень экономично, но не всегда приемлемо, так как при изменении

значительно меняется жесткость механических характеристик.

Двигатели параллельного возбуждения благодаря линейности и «жесткости» механических характеристик, а также возможности плавного регулирования скорости вращения в широких пределах, получили распространение как в силовом электроприводе (для механизмов и станков), так и в системах автоматического управления.

Электрические машины постоянного тока.

Генератор с параллельным возбуждением.

Расчётные формулы:

Ток отдаваемый генератором в сеть:

Эдс. генератора: Е= U+Iя ∙Rя.

Мощность отдаваемая сети: Р2 = U∙I =I 2 ∙R

Мощность приводного двигателя: Р1 = Р2/ η

Мощность потерь в обмотке якоря:

Ря = I 2 я∙ Rя

Мощность потерь в обмотке возбуждения:

Рв = U ∙Iв = I 2 в∙ Rв

Суммарные потери: ΣР = Р1 – …
Р2 .

Коэффициент полезного действия генератора:

η = Р2/Р1 = U∙I / (U∙I+ ΣР)

Двигатель с параллельным возбуждением.

Расчётные формулы:

Ток двигателя: I = Iя + Iв

Напряжение двигателя: U = E + Iя ∙Rя.

Мощность потребляемая от сети: Р1 = U∙I

Мощность на валу: Р 2 = Р 1 ∙η

Момент на валу двигателя:

М = 9550∙ Р 2 / n 2 .

Коэффициент полезного действия двигателя:

η = Р 2 /Р 1 = (U∙I- ΣР) / U∙I

Пример 6.1. Генератор постоянного тока с параллельным возбуждением развивает номинальное напряжение Uн =220 В. Генератор нагружен на нагрузку Rн = 2,2 Ом. Сопротивление обмотки якоря Rя = 0,2 Ом, обмотки возбуждения Rв =220 Ом. КПД генератора η = 0,87. Определить следующие величины:

1.ток нагрузки; 2. ток якоря; 3. ток возбуждения; 4. эдс генератора;

5.полезную мощность; 6. потребляемую мощность; 7. суммарные потери в генераторе; 8. потери в обмотке якоря; 9. потери в обмотке возбуждения.

1.Ток нагрузки:

2.Ток возбуждения:

3.Ток якоря: Iя = I – Iв = 100 – 1= 99 А.

4.Эдс генератора:

Е = U+ Iя ∙Rя = 220 + 99∙0,1 = 229,9 В.

5.Полезная мощность:

Р2 = Uн∙I = 220∙100 = 22000 Вт = 22 кВт.

6.Потребляемая мощность:

7.Суммарные потери в генераторе:

ΣР = Р1– Р2 = 25,87 – 22 = 3,87 кВт.

8.Потери в обмотке якоря:

Ря = Iя 2 ∙Rя = 99 2 ∙0,2 = 1960,2 Вт.

9.Потери в обмотке возбуждения:

Рв = Uн∙Iв = 220∙1 = 220 Вт.

Ответ: I = 100А; Iв = 1 А; Iя = 99 А; Е = 229,9 В; Р2 = 22 кВт;

Р1 = 25,87 кВт; ΣР = 3,87 кВт; Ря = 1960,2 Вт; Рв = 220 Вт.

Пример 6.2. Рис.8.2.Двигатель постоянного токапараллельного возбуждения работает от сети Uн = 220 В. Частота вращения якоря n2 = 1450 об/мин. Ток двигателя I = 500 А, противо–эдс якоря Е = 202 В, сопротивление обмотки возбуждения Rв = 44 Ом. Кпд двигателя

η = 0,88. Определить:1.ток возбуждения; 2.ток якоря; 3. сопротивление обмотки якоря; 4.потребляемую мощность; 5.полезную мощность на валу; 6 Суммарные потери в двигателе; 7.потери в обмотке якоря; 8.потери в обмотке якоря; 9.вращающий момент на валу.

1. Ток возбуждения:

2. Ток якоря:

Iя = I – Iв = 500 –5 = 495 А.

3. Сопротивление обмотки якоря:

4. Потребляемая мощность от сети:

Р1 = Uн∙I = 220 ∙500 = 110 000 Вт = 110 кВт.

5. Полезная мощность на валу:

Р2 = P1∙ η = 110 ∙ 0,87 = 95,7 кВт.

6. Суммарные потери в двигателе:

ΣР = Р1 – P2 = 110 – 95,7 = 14,3 кВт.

Рассмотрим более подробно характеристики двигателя параллельного возбуждения, которые определяют его рабочие свойства.

Скоростная и механическая характеристики двигателя определяются равенствами (6) и (7) при U =constиi B =const. При отсутствии дополнительного сопротивления в цепи якоря эти характеристики называются естественными.

(6)


(7)

Если щетки находятся на геометрической нейтрали, при увеличении I a потокФ δ несколько уменьшится вследствие действия поперечной реакции якоря. В результате этого скоростьn , согласно выражению (6), будет стремиться возрасти. С другой стороны, падение напряженияR a I a вызывает уменьшение скорости. Таким образом, возможны три вида скоростной характеристики, изображенные на рис 8;1 - при преобладании влияния R a I a ;2 - при взаимной компенсации влияния R a I a и уменьшения;3 - при преобладании влияния уменьшенияФ δ .

Ввиду того что изменение Ф δ относительно мало, механические характеристикиn=f(M) двигателя параллельного возбуждения, определяемые равенством (7), приU=constиi B ==constсовпадают по виду с характеристикамиn=f(I a ) (рис. 8). По этой же причине эти характеристики практически прямолинейны.

Характеристики вида 3 (рис. 8) неприемлемы по условиям устойчивости работы. Поэтому двигатели параллельного возбуждения изготовляются со слегка падающими характеристиками вида 1 (рис. 8). В современных высоко использованных машинах ввиду довольно сильного насыщения зубцов, якоря влияние поперечной реакции якоря может быть настолько большим, что получить характеристику вида1 (рис. 8) невозможно. Тогда для получения такой характеристики на полюсах помещают слабую последовательную обмотку возбуждения согласного включения, н. с. которой составляет до 10% от н. с. параллельной обмотки возбуждения. При этом уменьшение Ф δ под воздействием поперечной реакции якоря частично или полностью компенсируется. Такую последовательную обмотку возбуждения называют стабилизирующей, а двигатель с такой обмоткой по-прежнему называется двигателем -параллельного возбуждения.

Изменение скорости вращения Δ n (рис. 8) при переходе от холостого хода (I a = I a 0 ) к номинальной нагрузке (I a = I a н ) у двигателя параллельного возбуждения при работе на естественной характеристике мало и составляет 2-8% отn н . Такие слабо падающие характеристики называются жесткими. Двигатели параллельного возбуждения с жесткими характеристиками применяются в установках, в которых требуется, чтобы скорость вращения при изменении нагрузки сохранялась приблизительно постоянной (металлорежущие станки и пр.).

Рис. 8. Виды естественных скоростных и механических характеристик двигателя па­раллельного возбуждения

Регулирование скорости посредствам ослабленного магнитного потока производится обычно с помощью реостата в цепи возбуждения R p в (см. рис. 11). При отсутствии добавочного сопротивления в цепи якоря (R pa = 0 ) и U = const характеристики n =f (I a ) и n = f (M ) , определяемые равенствами (6) и (7), для разных значений R р.в. ,I B или Ф δ имеют вид, показанный на рис. 9. Все характеристики n = f (I a ) сходятся на оси абсцисс (n = 0) в общей точке при весьма большом токе I a , который равен


Однако механические характеристики пересекают ось абсцисс в разных точках.

Нижняя характеристика на рис. 9 соответствует номинальному потоку. Значения n при установившемся режиме работы соответствуют точкам пересечения рассматриваемых характеристик с кривойМ ст = f (п) для рабочей машины, соединенной с двигателем (штриховая линия на рис. 9).

Точка холостого хода двигателя (М = М 0 ,I a = I a 0 ) лежит несколько правее оси ординат на рис. 9. С увеличением скорости вращенияn вследствие увеличения механических потерьМ 0 иI 00 также увеличиваются. Если в этом режиме с помощью приложенного извне момента вращения начать увеличивать скорость вращенияn , тоЕ а = c e Ф δ т будет увеличиваться, аI а иМ будут, согласно равенствам


и

уменьшаться. При I а = 0 иМ. =0 механические и магнитные потери двигателя покрываются за счет подводимой к валу механической мощности, а при дальнейшем увеличении скоростиI а иМ изменят знак и двигатель перейдет в генераторный режим работы (участки характеристик на рис. 9 левее оси ординат).

Двигатели общего применения допускают по условиям коммутации регулирование скорости ослаблением поля в пределах 1: 2. Изготовляются также двигатели с регулированием скорости таким способом в пределах до 1: 5 или даже 1: 8, но в этом случае для ограничения максимального напряжения между коллекторными пластинами необходимо увеличить воздушный зазор, регулировать поток по отдельным группам полюсов или применить компенсационную обмотку. Стоимость двигателя при этом увеличивается.

Рис. 9. Механические и ско­ростные характеристики двига­теля параллельного возбужде­ния при разных потоках воз­буждения

Регулирование скорости сопротивлением в цепи якоря, искусственные механическая и скоростная характеристики. Если последовательно в цепь якоря включить добавочное сопротивление R pa (рис. 10, а), то вместо выражений (6) -и (7) получим


(8)


(9)

Сопротивление R pa может быть регулируемым и должно быть рассчитано на длительную работу. Цепь возбуждения должна быть включена на напряжение сети.


Рис. 10. Схема регулирования скорости вращения двигателя параллельного возбуждения с помощью сопротивления в цепи якоря (а) и соответствующие механические и скоростные характеристики (б)

Характеристики n = f ( M ) иn = f ( I a ) для различных значенийR pa =constприU =constиi B =constизображены на рис. 10, б (R pa 1 < R pa 2 < R pa 3 )- Верхняя характеристика (R pa = 0) является естественной. Каждая из характеристик пересекает ось абсцисс (n = 0) в точкес


и

Продолжения этих характеристик под осью абсцисс на рис. 10 соответствуют торможению двигателя противовключением. В этом случае n < 0, э.д.с.Е а имеет противоположный знак и складывается с напряжением сетиU , вследствие чего


а момент двигателя М действует против направления вращения и является поэтому тормозящим.

Если в режиме холостого хода (I a = I a 0 ) с помощью приложенного извне момента вращения начать увеличивать скорость вращения, то сначала достигается режимI a =0 , а затемI a изменит направление и машина перейдет в режим генератора (участки характеристик на рис. 10, б слева от оси ординат).

Как видно из рис. 10, б, при включении R pa характеристики становятся менее жесткими, а при больших величинахR pa - круто падающими, или мягкими.

Если кривая момента сопротивления M ст = f ( n ) имеет вид, изображенный на рис. 10, б штриховой линией, то значенияn при установившемся режиме работы для каждого значенияR ра определяются точками пересечения соответствующих кривых. Чем большеR pa , тем меньшеn и ниже к. п. д.

Рабочие характеристики представляют собой зависимости потребляемой мощностиР 1 потребляемого токаI , скоростиn , моментаМ и к. п. д.η ] от полезной мощностиР 2 , приU = const и неизменных положениях регулирующих реостатов. Рабочие характеристики двигателя параллельного возбуждения малой мощности при отсутствии добавочного сопротивления в цепи якоря представлены на рис. 11.

Одновременно с увеличением мощности на валуР 2 растет и момент на валуМ. Поскольку с увеличениемР 2 иМ скоростьn несколько уменьшается, тоМ = Р 2 /п растет несколько быстрееР 2 . УвеличениеР 2 иМ , естественно, сопровождается увеличением тока двигателяI . ПропорциональноI растет также потребляемая из сети мощностьР 1 . При холостом ходе (Р 2 = 0 ) к. п. д.η= 0 , затем с увеличениемР 2 сначалаη | быстро растет, но при больших нагрузках в связи с большим ростом потерь в цепи якоряη снова начинает уменьшаться.

Рис. 11 . Рабочие характеристики

двигателя параллельного возбуждения

Р Н = 10 квт, U Н = 220 в, п Н = 950 об/мин

Глава 29

Основные понятия

М, вращающим.

противоэлектродвижущей

. (29.1)

, (29.3)

,

.
Но, согласно (25.24),

, (29.4)

.

М, .



т. е. U или уменьшение потока Ф ;

U, Ф

Ф

Пуск двигателя

U .

пуско­вые реостаты

Р О 1 .


Одновременно через рычаг Р и шину Ш Р,

,

М прямо пропорциона­лен потоку Ф Ф

Глава 29

Основные понятия

Коллекторные машины обладают свойством об­ратимости, т. е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбужде­ния и в обмотке якоря машины появятся токи. Взаи­модействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который яв­ляется не тормозящим, как это имело место в гене­раторе, а вращающим.

Под действием электромагнитного момента яко­ря машина начнет вращаться, т. е. машина будет ра­ботать в режиме двигателя, потребляя из сети элек­трическую энергию и преобразуя ее в механичес­кую. В процессе работы двигателя его якорь враща­ется в магнитном поле. В обмотке якоря индуциру­ется ЭДС ,направление которой можно опреде­лить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока , и поэтому ее называют противоэлектродвижущей силой (противо-ЭДС) якоря (рис. 29.1).

Для двигателя, работающего с постоянной час­тотой вращения,

. (29.1)

Из (29.1) следует, что подведенное к двигателю напряжение уравновешивается противо-ЭДС обмот­ки якоря и падением напряжения в цепи якоря. На основании (29.1) ток якоря

Умножив обе части уравнения (29.1) на ток яко­ря , получим уравнение мощности для цепи якоря:

, (29.3)

где - мощность в цепи обмотки якоря; - мощность электрических потерь в цепи якоря.

Для выяснения сущности выражения проделаем следую­щее преобразование:

,

.
Но, согласно (25.24),

, (29.4)

где - угловая частота вращения якоря; - электромаг­нитная мощность двигателя.

Следовательно, выражение представляет собой электромаг­нитную мощность двигателя.

Преобразовав выражение (29.3) с учетом (29.4), получим

.

Анализ этого уравнения показывает, что с увеличением на­грузки на вал двигателя, т. е. с увеличением электромагнитного момента М, возрастает мощность в цепи обмотки якоря , т. е. мощность на входе двигателя. Но так как напряжение, подводимое к двигателю, поддерживается неизменным , то увеличе­ние нагрузки двигателя сопровождается ростом тока в обмотке якоря .

В зависимости от способа возбуждения двигатели постоянного тока, так же как и генераторы, разделяют на двигатели с возбуждени­ем от постоянных магнитов (магнитоэлектрические) и с электромаг­нитным возбуждением. Последние в соответствии со схемой включе­ния обмотки возбуждения относительно обмотки якоря подразделяют на двигатели параллельного (шунтовые), последовательного (сериесные) и смешанного (компаундные) возбуждения.

В соответствии с формулой ЭДС частота вращения двигателя (об/мин)

Подставив значение из (29.1), получим (об/мин)

т. е. частота вращения двигателя прямо пропорциональна на­пряжению и обратно пропорциональна магнитному потоку воз­буждения. Физически это объясняется тем, что повышение на­пряжения U или уменьшение потока Ф вызывает увеличение разности ; это, в свою очередь, ведет к росту тока [см. (29.2)]. Вследствие этого возросший ток повышает вращающий момент, и если при этом нагрузочный момент остается неизмен­ным, то частота вращения двигателя увеличивается.

Из (29.5) следует, что регулировать частоту вращения двига­теля можно изменением либо напряжения U, подводимого к дви­гателю, либо основного магнитного потока Ф , либо электрическо­го сопротивления в цепи якоря .

Направление вращения якоря зависит от направлений магнит­ного потока возбуждения Ф и тока в обмотке якоря. Поэтому, из­менив направление какой-либо из указанных величин, можно из­менить направление вращения якоря. Следует иметь в виду, что переключение общих зажимов схемы у рубильника не дает изме­нения направления вращения якоря, так как при этом одновремен­но изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.

Пуск двигателя

Ток якоря двигателя определяется формулой (29.2). Если при­нять U и неизменными, то ток зависит от противо-ЭДС . Наибольшего значения ток достигает при пуске двигателя в ход. В начальный момент пуска якорь двигателя неподвижен и в его обмотке не индуцируется ЭДС . Поэтому при непо­средственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток

Обычно сопротивление невелико, поэтому значение пус­кового тока достигает недопустимо больших значений, в 10-20 раз превышающих номинальный ток двигателя.

Такой большой пусковой ток весьма опасен для двигателя. Во-первых, он может вызвать в машине круговой огонь, а во-вторых, при таком токе в двигателе развивается чрезмерно большой пус­ковой момент, который оказывает ударное действие на вращаю­щиеся части двигателя и может механически их разрушить. И на­конец, этот ток вызывает резкое падение напряжения в сети, что неблагоприятно отражается на работе других потребителей, вклю­ченных в эту сеть. Поэтому пуск двигателя непосредственным подключением в сеть (безреостатный пуск) обычно применяют для двигателей мощностью не более 0,7-1,0 кВт. В этих двигате­лях благодаря повышенному сопротивлению обмотки якоря и не­большим вращающимся массам значение пускового тока лишь в 3-5 раз превышает номинальный, что не представляет опасности для двигателя. Что же касается двигателей большей мощности, то при их пуске для ограничения пускового тока используют пуско­вые реостаты (ПР), включаемые последовательно в цепь якоря (реостатный пуск).

Перед пуском двигателя необходимо рычаг Р реостата поста­вить на холостой контакт О (рис. 29.2). Затем включают рубиль­ник, переводят рычаг на первый промежуточный контакт 1 и цепь якоря двигателя оказывается подключенной к сети через наиболь­шее сопротивление реостата .


Рис. 29.2. Схема включения пускового реостата

Одновременно через рычаг Р и шину Ш к сети подключается обмотка возбуждения, ток в которой в течение всего периода пус­ка не зависит от положения рычага Р, так как сопротивление ши­ны по сравнению с сопротивлением обмотки возбуждения пренеб­режимо мало.

Пусковой ток якоря при полном сопротивлении пускового реостата

С появлением тока в цепи якоря возникает пусковой мо­мент , под действием которого начинается вращение якоря. По мере нарастания частоты вращения увеличивается противо-ЭДС , что ведет к уменьшению пускового тока и пуско­вого момента.

По мере разгона якоря двигателя рычаг пускового реостата переключают в положения 2, 3 и т. д. В положении 5 рычага рео­стата пуск двигателя заканчивается . Сопротивление пус­кового реостата выбирают обычно таким, чтобы наибольший пус­ковой ток превышал номинальный не более чем в 2-3 раза.

Так как вращающий момент двигателя М прямо пропорциона­лен потоку Ф [см. (25.24)], то для облегчения пуска двигателя па­раллельного и смешанного возбуждения сопротивление реостата в цепи возбуждения следует полностью вывести . Поток возбуждения Ф в этом случае получает наибольшее значение и двигатель развивает необходимый вращающий момент при мень­шем токе якоря.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громозд­кими. Поэтому в двигателях большой мощности применяют без­реостатный пуск двигателя путем понижения напряжения. Приме­рами этого являются пуск тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе (см. § 29.6) или пуск двига­теля в схеме «генератор-двигатель» (см. § 29.4).

Двигатель параллельного возбуждения

Схема включения в сеть двигателя параллельного возбужде­ния показана на рис. 29.3, а. Характерной особенностью этого двигателя является то, что ток в обмотке возбуждения (ОВ) не за­висит от тока нагрузки (тока якоря). Реостат в цепи возбуждения служит для регулирования тока в обмотке возбуждения и маг­нитного потока главных полюсов.

Эксплуатационные свойства двигателя определяются его ра­бочими характеристиками, под которыми понимают зависимость частоты вращения n , тока I , полезного момента M 2 , вращающего момента M от мощности на валу двигателя Р 2 при и (рис. 29.3, 6 ).

Для анализа зависимости и , которую обычно называ­ют скоростной характеристикой, обратимся к формуле (29.5), из которой видно, что при неизменном напряжении U на частоту вращения влияют два фактора: падение напряжения в цепи якоря и поток возбуждения Ф . При увеличении нагрузки умень­шается числитель , при этом вследствие реакции якоря уменьшается и знаменатель Ф . Обычно ослабление потока, вы­званное реакцией якоря, невелико и первый фактор влияет на час­тоту вращения сильнее, чем второй. В итоге частота вращения двигателя с ростом нагрузки Р 2 уменьшается, а график приобретает падающий вид с небольшой выпуклостью, обращен­ной к оси абсцисс. Если же реакция якоря в двигателе сопровож­дается более значительным ослаблением потока Ф , то частота вращения с увеличением нагрузки будет возрастать, как это пока­зано штриховой кривой на рис. 29.3, б. Однако такая зависимость является нежелательной, так как она, как правило, не удовлетворяет условию устойчивой работы двигателя: с ростом нагрузки на двигатель возрастает частота вращения, что ведет к дополнительному росту нагрузки и т. д., т. е. частота вращения n двигателя неограниченно увеличивается и двигатель идет «в разнос». Чтобы обеспечить характеристике частоты вращения форму падающей кривой, в некоторых двигателях параллельного возбу­ждения применяют легкую (с небольшим числом витков) последо­вательную обмотку возбуждения, которую называют стаби­лизирующей обмоткой. При включении этой обмотки согласованно с параллельной обмоткой возбуждения ее МДС компенсирует размагничивающее действие реакции якоря так, что поток Ф во всем диапазоне нагрузок остается практически неизменным.. ,так как

Если пренебречь реакцией якоря, то (так как ) можно принять . Тогда механическая характеристика двигателя па­раллельного возбуждения представляет собой прямую линию, не­сколько наклоненную к оси абсцисс (рис. 29.4, а ). Угол наклона меха­нической характеристики тем больше, чем больше значение сопротивления, включенного в цепь якоря. Механическую характери­стику двигателя при отсутствии дополнительного сопротивления в цепи якоря называют естественной (прямая 1 ). Механические харак­теристики двигателя, полученные при введении дополнительного со­противления в цепь якоря, называют искусственными (прямые 2 и 3 ).

Вид механической характеристики зависит также и от значе­ния основного магнитного потока Ф . Так, при уменьшении Ф уве­личивается частота вращения х.х. и одновременно увеличивает­ся , т. е. увеличиваются оба слагаемых уравнения (29.11). Это приводит к резкому увеличению наклона механической характе­ристики, т. е. к уменьшению ее жесткости (рис. 29.4, б ).

При изменении напряжения на якоре U меняется частота вра­щения , а остается неизменной. В итоге жесткость механиче­ской характеристики (если пренебречь влиянием реакции якоря) не меняется (рис. 29.4, в ), т. е. характеристики смещаются по вы­соте, оставаясь параллельными друг другу.

Как и в случае генератора, обмотки индуктора и якоря двигателя могут быть соединены либо последовательно (рис.339), либо параллельно (рис.340). В первом случае двигатель называют двигателем с последовательным возбуждением (или сериесным двигателем), во втором – двигателем с параллельным возбуждением (или шунтовым двигателем). Применяются также двигатели со смешанным возбуждением (компаунд-двигатели), в которых часть обмоток индуктора соединена с якорем последовательно, а часть параллельно. Каждый из этих типов двигателей имеет свои особенности, делающие его применение целесообразным в одних случаях и нецелесообразным в других.

1. Двигатели с параллельным возбуждением. Схема включения в сеть двигателей этого типа показана на рис. 361. Так как здесь цепи якоря и индуктора не зависят друг от друга, то ток в них можно регулировать независимо при помощи отдельных реостатов, включенных в эти цепи. Реостат , включенный в цепь якоря, называют пусковым, а реостат , включенный в цепь индуктора, – регулировочным. При пуске в ход двигателя с параллельным возбуждением пусковой реостат должен быть обязательно полностью включен; по мере того как двигатель набирает частоту вращения, сопротивление реостата постепенно уменьшают и при достижении нормальной частоты вращения этот реостат выводится из цепи полностью. Двигатели с параллельным возбуждением, особенно значительной мощности, ни в коем случае нельзя включать без пускового реостата. Точно так же при выключении двигателя следует сначала постепенно ввести реостат и лишь после этого выключить рубильник, соединяющий двигатель с сетью.

Рис. 361. Схема включения двигателя с параллельным возбуждением. Латунная дуга 1, по которой движется рычаг пускового реостата, через зажим 2 присоединена к концу регулировочного реостата, а через зажим 3 – к пусковому реостату. Это делается для того, чтобы при переводе пускового реостата на холостой контакт 4 и выключении тока цепь возбуждения не разрывалась

Нетрудно понять соображения, которыми вызваны эти правила включения и выключения двигателей. Мы видели (см. формулу (172.1)), что ток в якоре

,

где – напряжение сети, а - э. д. с., индуцированная в обмотках якоря. В первый момент, когда двигатель еще не успел раскрутиться и набрать достаточную частоту вращения, э. д. с. очень мала и ток через якорь приближенно равен

Сопротивление якоря обычно очень мало. Оно рассчитывается так, чтобы падение напряжения на якоре не превышало 5-10 % от напряжения сети, на которое рассчитан двигатель. Поэтому при отсутствии пускового реостата ток в первые секунды мог бы в 10-20 раз превысить нормальный ток, на который рассчитан двигатель при полной нагрузке, а это для него очень опасно. При введенном же пусковом реостате с сопротивлением пусковой ток через якорь

. (173.1)

Сопротивление пускового реостата подбирают так, чтобы пусковой ток превышал нормальный не больше чем в 1,5-2 раза.

Поясним сказанное числовым примером. Положим, что мы имеем двигатель мощности 1,2 кВт, рассчитанный на напряжение 120 В и имеющий сопротивление якоря . Ток через якорь при полной нагрузке

.

Если бы мы включили этот двигатель в сеть без пускового реостата, то в первые секунды пусковой ток через якорь имел бы значение

,

в 10 раз превышающее нормальный рабочий ток в якоре. Если же мы хотим, чтобы пусковой ток превышал нормальный не больше, чем в 2 раза, т. е. был равен 20 А, то мы должны подобрать пусковое сопротивление таким, чтобы имело место равенство

откуда Ом.

Ясно также, что для шунтового двигателя очень опасна внезапная его остановка без выключения, например вследствие резкого возрастания нагрузки, так как при этом э. д. с. падает до нуля и ток в якоре возрастает настолько, что избыток выделяемого в нем джоулева тепла может привести к расплавлению изоляции или даже самих проводов обмотки (двигатель «перегорает»).

Регулировочный реостат , включенный в цепь индуктора, служит для того, чтобы изменять частоту вращения двигателя. Увеличивая или уменьшая сопротивление цепи индуктора с помощью этого реостата, мы изменяем ток в цепи индуктора, а тем самым и магнитное поле, в котором вращается якорь. Мы видели выше, что при заданной нагрузке двигателя ток в нем автоматически устанавливается такой, чтобы возникающий вращающий момент уравновешивал тормозящий вращающий момент, создаваемый нагрузкой двигателя. Это осуществляется благодаря тому, что индуцированная э. д. с. достигает соответствующего значения. Но индуцированная э. д. с. определяется, с одной стороны, магнитной индукцией, а с другой, – частотой вращения якоря.

Чем больше магнитный поток индуктора, тем меньше должна быть частота вращения двигателя, чтобы получить определенное значение э. д. с., и, наоборот, чем слабее магнитный поток, тем больше должна быть частота вращения. Поэтому, для того чтобы при заданной нагрузке увеличить частоту вращения шунтового двигателя, нужно ослабить магнитный поток в индукторе, т. е. ввести большее сопротивление в цепь индуктора при помощи регулировочного реостата. Напротив, чтобы уменьшить частоту вращения шунтового двигателя, нужно увеличить магнитный поток в индукторе, т. е. уменьшить сопротивление в цепи индуктора, выводя регулировочный реостат.

С помощью регулировочного реостата можно при нормальном напряжении и отсутствии нагрузки установить нормальную частоту вращения двигателя. При возрастании нагрузки ток в якоре должен возрастать, а индуцированная в нем э. д. с. – уменьшаться. Это происходит вследствие некоторого уменьшения частоты вращения якоря. Однако уменьшение частоты вращения, обусловленное возрастанием нагрузки от нуля до нормальной мощности двигателя, обычно очень незначительно и не превышает 5-10 % от нормальной частоты вращения двигателя. Это обусловлено главным образом тем, что в двигателях с параллельным возбуждением ток в индукторе не изменяется при изменении тока в якоре. Если бы при изменениях нагрузки мы хотели поддерживать прежнюю частоту вращения, то это можно было бы осуществить, несколько изменяя с помощью регулировочного реостата ток в цепи индуктора.

Таким образом, с эксплуатационной точки зрения двигатели постоянного тока с параллельным возбуждением (шунтовые двигатели) характеризуются следующими двумя свойствами: а) частота их вращения при изменении нагрузки остается почти постоянной; б) частоту их вращения можно в широких пределах изменять с помощью регулировочного реостата. Поэтому такие двигатели довольно широко применяются в промышленности там, где обе указанные их особенности имеют значение, например для приведения в действие токарных и других станков, частота вращения которых не должна сильно зависеть от нагрузки.

173.1. На рис. 362 показана схема шунтового двигателя с так называемым комбинированным пуско-регулировочным реостатом. Разберитесь в этой схеме и объясните, какую роль играют отдельные части этого реостата.

Рис. 362. К упражнению 173.1

173.2. Нужно пустить в ход шунтовый двигатель. Для этого даны два реостата: один из толстой проволоки с малым сопротивлением, другой из тонкой проволоки с большим сопротивлением. Какой из этих реостатов следует включить как пусковой и какой как регулировочный? Почему?

2. Двигатели с последовательным возбуждением. Схема включения в сеть этих двигателей показана на рис. 363. Здесь ток якоря является в то же время и током индуктора, и потому пусковой реостат изменяет и ток в якоре, и ток в индукторе. При холостом ходе или очень малых нагрузках ток в якоре, как мы знаем, должен быть очень мал, т. е. индуцированная э. д. с. должна быть почти равна напряжению сети. Но при очень малом токе через якорь и индуктор слабо и поле индуктора. Поэтому при малой нагрузке необходимая э. д. с. может быть получена только за счет очень большой частоты вращения двигателя. Вследствие этого при очень малых токах (малой нагрузке) частота вращения двигателя с последовательным возбуждением становится настолько большой, что это может стать опасным с точки зрения механической прочности двигателя.

Рис. 363. Схема включения двигателя с последовательным возбуждением

Говорят, что двигатель идет «вразнос». Это недопустимо, и поэтому двигатели с последовательным возбуждением нельзя пускать в ход без нагрузки или с малой нагрузкой (меньшей 20-25 % от нормальной мощности двигателя). По этой же причине не рекомендуется соединять эти двигатели со станками или другими машинами ременными или канатными передачами, так как обрыв или случайный сброс ремня приведет к «разносу» двигателя. Таким образом, в двигателях с последовательным возбуждением при возрастании нагрузки увеличиваются ток в якоре и магнитное поле индуктора; поэтому частота вращения двигателя резко падает, а развиваемый им вращающий момент резко возрастает.

Эти свойства двигателей с последовательным возбуждением делают их наиболее удобными для применения на транспорте (трамваи, троллейбусы, электропоезда) и в подъемных устройствах (кранах), так как в этих случаях необходимо иметь в момент пуска при очень большой нагрузке большие вращающие моменты при малых частотах вращения, а при меньших нагрузках (на нормальном ходу) меньшие моменты и большие частоты.

Регулирование частоты вращения двигателя с последовательным возбуждением производится обычно регулировочным реостатом, включенным, параллельно обмоткам индуктора (рис. 364). Чем меньше сопротивление этого реостата, тем большая часть тока якоря ответвляется в него и тем меньший ток идет через обмотки индуктора. Но при уменьшении тока в индукторе частота вращения двигателя возрастает, а при его увеличении падает. Поэтому, в отличие от того, что имело место для шунтового двигателя, для того чтобы увеличить частоту вращения сериесного двигателя, нужно уменьшить сопротивление цепи индуктора, выводя регулировочный реостат. Для того чтобы уменьшить частоту вращения сериесного двигателя, нужно увеличить сопротивление цепи индуктора, вводя регулировочный реостат.

Рис. 364. Схема включения реостата для регулирования частоты вращения сериесного двигателя

173.3. Объясните, почему сериесный двигатель нельзя пускать вхолостую или с малой нагрузкой, а шунтовый можно.

Таблица 8. Преимущества, недостатки и области применения двигателей различных типов

Тип двигателя

Основные преимущества

Основные недостатки

Область применения

Трехфазный двигатель переменного тока с вращающимся полем

1. Слабая зависимость частоты вращения от нагрузки

2. Простота и экономичность конструкции

3. Применение трехфазного тока

1. Трудность регулирования частоты вращения

2. Малый вращающий момент при пуске

Станки и машины, требующие постоянства частоты вращения при изменениях нагрузки, но не нуждающиеся в регулировке частоты вращения

Двигатель постоянного тока с параллельным возбуждением (шунтовый)

1. Постоянство частоты вращения при изменениях нагрузки

2. Возможность регулирования частоты вращения

Малый вращающий момент при пуске

Станки и машины, требующие постоянства частоты вращения при изменениях нагрузки и возможности регулировать частоту вращения

Двигатель постоянного тока с последовательным возбуждением (сериесный)

Большой вращающий момент при пуске

Сильная зависимость частоты вращения от нагрузки

Тяговые двигатели в трамваях и электропоездах, крановые двигатели

В заключение сопоставим в виде табл. 8 основные преимущества и недостатки различных типов электродвигателей, рассмотренных нами в этой главе, и области их применения.